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AN AUTOMATED SYSTEM FOR INTERPRETING GRAVITATIONAL
ANOMALIES (THE MINIMIZATION METHOD)

Ye. G. Bulakh

Introduction

Geophysical survey methods are of primary importance in geological surveying. /3*
A properly designed survey using geophysical methods makes it possible to direct
future survey work efficiently and to decrease its cost significantly.

One of the most important components of any geophysical survey method is
the geological interpretation of field material. In the end result this inter-
pretation, together with correct methodology and field operational technology,
determines the success of survey operations carried out using geophysical methods.

Computers have recently begun to be used to process and interpret geophysical
materials. They have been used widely to interpret gravitational data.

While not setting ourselves the goal of reviewing the possibilities of
applying computers to all areas of exploratory geophysics, we will examine
several questions concerning the use of computers to interpret gravitational
anomalies.

It is possible to distinguish four independent trends among questions
concerning the possibility of using and applying computers to quantatively
interpret gravitational anomalies.

To the first trend we assign work associated with transforming observed
anomalies and with calculating various correction factors. This work is usually
very unwieldy. The results of the conversions and transformations of the field
observed can be used both for qualitative and for quantatitive interpretation.

The second trend includes the problem of directly interpreting anomalies
with existing computers. This involves programming and machine solution of a
number of tasks relating to calculation of parameters which determine perturbing
masses. In this process the initial data are represented by the values of the
anomalous function.

The third trend includes questions concerning use of computers to calculate
various measuring grids, nomograms, tables, and other interpretative aids. Theseaids can increase the effectiveness of methods of interpretation already known, /4
and can aid in developing new methods which could not be introduced earlier
because of the cumbersome calculations involved.

*Numbers in the margin indicate pagination in the foreign text.



The fourth trend comprises work toward creation of specialized problem-
solving machines to interpret anomalies.

Let us examine each trend in somewhat more detail.

First trend. Computers make it possible to perform calculations relatively
quickly even with the most complicated formulas. Hence it is natural that, from
the very start, research on the use of computers to process and interpret geo-
physical observations was aimed at automating laborious calculations.

By the time computer technology was introduced into gravimetry, the
calculations associated with field transformation were extremely cumbersome.
Therefore, programs were written primarily on field transformation to perform
gravimetric calculation problems.

In the USSR I. A. Balabushevich, B. V. Bondarenko, R. S. Volodarskiy,
0. K. Litvinenko, V. N. Strakhov, and others became the first to use computers
for the transformation of fields. The use of computers for the transformation
of anomalies required the development of more sophisticated computer design
(G. I. Karatayev, A. K. Malovichko, M. G. Serbulenko, V. N. Strakhov, M. LaPorte,
and others). This trend includes work in computer calculation of correction
factors for the influence of landscape relief in surveying with a gravimeter
(V. I. Aronov, L. A. Koval', M. Bott, M. Kane, and others). A fairly circumstan-
tial review of the research in this direction has been made in [36, 49, 85, 111,
etc.].

The second trend, i.e., use of computers to interpret anomalies, was developed
almost simultaneously with the first trend. Computers make it possible to carry
out even the most difficult calculations in a relatively short time. However,
the basic importance of these investigations for the interpretation of anomalies
is the fact that, with the new capabilities of technology, qualitatively
improved methods of interpretation can be created. Now there arises the task
of developing more universal methods of interpretation which cannot be applied
without using computers. It is impossible to create one universal machine
method for interpreting gravitational anomalies; the interpretation methods
differ under various physicogeological conditions. It is necessary to generate
a small array of these methods and then carefully determine the areas in which
they can be used. Works are already available on creating effective machine
methods of interpretation.

The first stage of the second trend is development of effective methods
of solving direct problems, a task which has great significance for automated
computation in interpreting anomalies. No matter the methods by which anomalies /5
are interpreted, the diagram of the geological structure of a region will be
built, as a result, on the basis of all the data (geological and geophysical).
It is necessary to solve the direct problem of gravitational survey to confirm
the correctness of this diagram's structure. In addition, many researchers are
coming to the conclusion that when using field transformation it is impossible
to single out an anomaly caused only by the geological feature in question.
The so-called geological reduction method has been widely applied in the
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practice of interpretation. Its basic characteristic is the fact that the
fields are divided by subtracting from the observed gravitational field the
effict of the feature, the position and dimensions of which are established
according to geological data or during interpretation of the data of other
geophysical methods. In this process it is necessary again to solve the direct
geological structure problems formulated by the researcher.

When calculating anomalies for certain geological features, we encounter
an abundance of perturbing masses. This causes great difficulties. However,
the calculation process for solving this direct problem can be unified with an
adequate degree of precision.

In fact, say that it has been established to be possible to consider a
perturbing body as being two-dimensional. Let us further assume that the
perturbing masses are concentrated in one or several areas. Each area can be
well approximated by a segmented straight line boundary. Thus, the gravitational
field created by any two-dimensional body is approximated by the sum of the
gravitational fields of its projections. Each projection is determined by five
parameters: xl, h, x2, H, which are the coordinates of the angular points, and

a which is the excess density.

Calculations for three-dimensional bodies can be unified in a similar way.
For this purpose it is sufficient to represent the perturbing bodies as the
sum of projections of limited extent or as the sum of parallelepipeds. In the
latter case each geological feature is described by seven parameters. Six of
them characterize the location of the boundaries, and the seventh characterizes
the excess density. This approximation makes it possible to describe bodies
of variable density.

The programs which have been written make it possible to calculate the
observed field. From the interpretation stage, in which the hypothesis
concerning the geological structure of the region was formulated, one proceeds
to calculate the anomaly. It is necessary to feed into the computer information
which reflects the determined geological configuration. This is a system of
five-dimensional vectors (for a two-dimensional geological section) or seven-
dimensional ones (for a three-dimensional section). In addition, it is necessary
to have a clear idea of the coordinates of the initial point, the distance
between the points on the profile, and the distance between the profiles, as
well as the coordinates of the terminal point. The programs are written for
an indeterminate number of vectors which reflect the geological structure. A
maximum limit is imposed on this number, depending on the volume of the effective
memory. Thus, it is necessary in each specific case to feed into the computer /6
a number equal to the number of vectors providing information which describes
the geological configuration.

The effectiveness of these calculations has been verified by means of
numerous examples in interpreting regions complex in the geological sense of
the word.
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0. K. Litvinenko, M. Bott, M. Tal'vani, and others have concerned them-
selves with the solution of similar problems.

The second stage is the development of automatic machine methods for
interpreting anomalies. These methods have been given a theoretical basis by
the research of A. N. Tikhonov, V. K. Ivanov, M. M. Lavrent'ev, and others. It
is also possible to classify the methods of searching for singular points [59,
60, 74] under the works in this direction. Relatively stable algorithms have
been obtained which make it possible to carry out the calculation processes by
computer.

In the works of S. V. Shalayev [75-77], study is made of the problem of
approximating an observed anomaly by a rational fraction. Such an approximation
makes it possible to find the singular points of perturbing masses. A linear
programming device is used for the actual calculations.

In [56a, 80] a summary is given of the methods of determining the position
and dimensions of perturbing bodies and the excess mass (the grid method). A
similar task situation is also presented in [89]. The half-space in which the
perturbing masses are concentrated is divided into elementary bodies (prisms
or parallelepipeds). By minimizing the difference between the observed and
theoretical anomalies, one finds the values of the excess densities within each
elementary body. S. V. Shalayev [77, 78] developed this method further in his
works. He reduced the problem to linear programming.

A second variation of the grid method has been summarized in [31]. A
number of works have since appeared, in which this variation has been put to
practical use [37, 52, 53].

In a number of works the solution of the inverse problem is reduced to
iteration processes [87, 91, 114, ,etc.]. In order to minimize the specially
constructed functional, the least square method [90, 93, 96] is used.

In [100] the relaxation method is used to solve the inverse problem. The
perturbing body is approximated by the sum of vertical prisms with their square
bases. The gravitational effect is calculated at points of a square grid. The
method can be used if one knows the depth of the interface at least one point
and the excess density.

On the basis of the Poincaire theorem, D. Zidarov has worked out an original
method for determining the configurations of perturbing geological features
[117]. If the centers of the masses are known, then it is possible to construct
a convergent iteration process for "sweeping out" the perturbing masses into
the surrounding space. The computation cycles are repeated until homogenous /7
geological features are obtained which have the assigned excess density.

Methods of special correlation analysis [33] have been developed for fore-
casting in geology. By taking a certain area as a standard, it is possible to
predict geological structure on the basis of observations of geophysical fields
in other similar regions.
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I. Nedyalkov [102] has proposed a heuristic method for solving one class
of inverse problems of the theory of potential. The parameters of the geological
configuration are determined by using specially constructed self-learning [sic]
algorithms.

One could continue this list of the works the theme of which adheres to
this trend. They would include the fundamental monograph by F. M. Gol'tsman
[20] and a large number of works by other researchers. The works cited in this
review can serve only to illustrate the general content of the second trend
in research.

As regards the third trend, as indicated earlier, it comprises works which
make use of computers to calculate tables, nomograms, measuring grids, etc.
The results of the calculations serve the purpose of practical application of
a new method or a new means of processing and interpreting anomalies. At first
glance the question of the means used to calculate these measuring grids or
tables is not one of fundamental importance. This is true when the formulas
are not too cumbersome and allow calculations using tables and an adding
machine. However, one often encounters problems solution of which cannot be
accomplished without using computer technology. The calculation of integral
measuring grids [14] may serve as an example.

It is not possible to give a complete survey of works in the third trend
of research. Many calculations have been carried out recently using computers,
and by no means all authors concentrate their attention in this area [82-84].

A review of the works in the fourth trend has been given in [57].
Almost all of the specialized analog devices are based on the fact that the
various physical fields have common properties. These devices make use of the
mathematical analogy between gravitational fields and electrical, radioactive,
electromagnetic, and light fields.

Researchers have come to the conclusion that analog computers can be used
effectively to interpret an observed field only when the following conditions
are satisfied:

1. The parameters of the perturbing body undergo slight variation;

2. Calculation of the field is done relatively quickly;

3. The results of the calculation are printed out in a form in which the
calculated and observed anomalies can be quickly and easily compared;

4. The device must be simple, reliable, and convenient to use.

Despite their seeming simplicity, the models set up to interpret by the /8
matching method have not been widely used. One of the basic reasons for this
is the fact that by no means all of the analog computers meet the above-
mentioned requirements.
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The problems in the second area of research have been examined in this
monograph. Research is cited which uses the minimization method to solve the
inverse problem. This method makes it possible to create a closed automated
system for quantitative calculations. This system of calculations includes the
stages of the preliminary survey type (calculation of the direct problem),
search for a background effect, and lastly automated search for a new variation
of the geological configuration.
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CHAPTER I

SOLVING INVERSE PRELIMINARY GRAVIMETER SURVEY
PROBLEMS BY THE MINIMALIZATION METHOD

Section 1. Statement of the Problem /9

When we speak about using computers to process and interpret gravimetric
data, we mean primarily the automation of calculation operations. Computers
unquestionably make it possible to carry out even the most complicated cal-
culations relatively quickly and accurately. The basic reason for using these
machines in interpretation practice is nevertheless the fact that, on the basis
of new technical capabilities, quantitatively new methods of processing and
interpretation can be developed and used.

The entire cycle of calculation operations and logical operations can be
reduced to a single automated system for processing and interpreting gravimetric
data. Structurally this system consists of two independent parts. The first
part consists of the processing of observations, the introduction of various
correction factors and reductions, and the process of obtaining an anomalous
gravitational field. If necessary, various transformations can be carried out
here. The field can be converted to any other level, higher derivatives or
field potentials can be computed, and other special functions can be constructed
for the field under study, such as the Saksov function, the Nigard function,
etc. The results of the processing are usually presented in the form of
catalogs and graphs along fixed profiles and charts of the anamalous field and
its transformations. After comprehensive processing of the observed data,
it is possible to thoroughly analyze all the material obtained and compare it
with the data of other geophysical methods and with information on the geological
structure of the region. This is the total of the subject of qualitative in-
terpretation.

Various reductions are introduced into the observed field; correction
factors or observed data have been converted to other functions so that it will
be possible to state with confidence that the anomaly obtained has been caused
only by heterogeneities in the geological structure. On a plan or graphs places
are pinpointed in which bodies with too little or too much mass are concentrated,
the configurations of these masses are established in general form, their
approximate epicenters are indicated, and several conclusions are drawn about
the geometric form of the geological features.

The second step is represented by quantitative calculations. The numerical /10
values of the parameters of the geological features and the density characteristics
of the rocks which make up these features must be established on the basis of
the peculiarities of the anomalies. The choice of the methods of making the
quantitative calculations depends on both the type of anomalous field and on
the geological premises which the researcher has accepted as his basic working
material.
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The second part of the automated system, i.e., the system for interpreting
the gravimetric data, is associated with the quantitative interpretation. The
magnitudes which characterize the occurrence of the masses of interest to us can
be estimated quantitatively by several methods. Each of these methods has
both strong and weak aspects, and as a result of this each one can give satis-
factory and unsatisfactory results in determining the indicated magnitudes.
This depends on the geological conditions under which the anomaly being inter-
preted has been obtained. Where one of the means gives satisfactory results and
can therefore be used successfully, another one is not used.

As a whole all of these methods should be considered to be of equal value,
but each of them must be used while taking into account the geological structure
of the region in which the anomaly being interpreted is located. If the region
being studied is relatively complicated in the physico-geological sense, and
if the researcher has somewhat limited information about the structure and
makeup of the geological objects, then often the only effective means of in-
terpreting under these conditions is the selection method. The researcher
constructs his geological model on the basis of all information available about
the region's geological structure, while taking into account the anomalous
field. The direct problem is solved, and the gravitational effect is found
from the appropriate geological model. By comparing the observed and theoretically
calculated anomalies, the researcher should change the geological model con-
structed earlier in such a way that the newly calculated gravitational effect
comes as close as possible to the actually observed field. In this process it
is first necessary to know how to solve the direct problem quickly, and second
to know how to construct the type of algorithm which would make it possible
to answer the questions of how to use the geological model so that the observed
anomaly coincides in the best way possible with one which has been calculated
theoretically.

In the following section we will dwell on a description of this type of
algorithm. Calculation of the direct problem is a component part of this
algorithm. Thus, in order to solve the problem of determining the parameters
of geological bodies, we have an observed anomaly, all variations in which are
related to geological heterogeneities and the initial variation of the geological
structure model. The observed field and the tentative model of the geological
structure together form the initial data for the quantitative calculation. It
is necessary to change some of the geological parameters so the observed and
theoretically calculated fields may more closely coincide.

Now in the observed field let us fix end points with the coordinates (x /11
and yi). Let these be the most widely varied points at which the observed

gravitational anomaly manifests itself in its most characteristic manner
(extremums, points of inflection, etc.). In the future we will select a field
only at the fixed point.

We will introduce one restriction. Let the geological model be constructed
in such a way that its gravitational effect can be recorded in an analytic form.
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If the geological bodies are approximated by putting together projections (gra-
vitational steps) which are finite in space, then even the most complicated
structural model can be assembled with relative ease from these elementary
features.

Thus on the one hand we have the observed anomaly Vobse(xi, yi), and on

the other hand the theoretical anomaly Vtheo(P1' P2''"'Pm' xi' yi) , i = 1, 2,
...,n. Here the function V can stand for any component of the gravitational
field (Ag, Vxz, etc.). If the geological model has been described using m

elementary bodies, and each body is characterized by s parameters, then the
result of solving the direct problem will be the theoretical anomaly

Vt (x, y) V (P,, x,y). (1.1)

By the symbol P. we indicate the vector which characterizes the location and

dimensions of the elementary bodies, P = (pjl' Pj2 ' ..P js). Let us illustrate

this with an example. Let the geological structure of an area be approximated
by a collection of direct projections which are limited in space. The location
and dimensions of each projection are characterized by these parameters: a is
the excess density, h and H are the depths to the upper and lower limits, Z and

Z2 are the parameters which characterize the projection's dimensions in space,
and d is the location of the vertical boundary relative to the selected beginning
of the coordinates. The value of these parameters is shown in Figure 1. Thus
the totality of the vector P.J = (a., h, Hj, 1j, 12j d.) characterize the

geological schematic of the region being investigated.

Now it is necessary to find the value of the parameters p. at which the

function Vtheo best coincides with Vobse. The process of comparing these two

curves can vary. Let us examine one of them.

In order to compare the functions Vobse (x, y) and Vtheo(x, y), let us set /12

up the functional

F .Vobse(x,, Yi - theo(x,, y)12. (1.2)

Since the points with the coordinate (xi, Yi) have been fixed, then F depends

only on the parameters p.. Having numbered them sequentially, one can write

F =F(p, pt, .... PN). (1.3)

Expression (1.3) can be regarded as a function from one N-dimensional vector
P = (pI' P2' .".. PN)'

9



Let us select a vector P so that the
functional (1.2) acquires minimum value.
Thus the task of interpretation is reduced
to the extreme problem of the function with

-- many variables.

Let us turn our attention to some
At - theorems about the extremums of several

variables. The following theorem speaks of
the condition necessary for the existence
of an extremum. Let function (1.3) be such
that in the area where it is being investi-

Sgated there are partial derivatives of the
first and second orders. Then if at point

(0) (0) (0)Mo P1 oP2 111, pN ) a local extremum

exists, then all partial derivatives of the
first order at this point are equal to 0.

Figure 1. Values of Para-
meters Characterizing the Then
Location and Dimensions of
an Elementary Geological Body, - M =0 (=1 2, ... N) (1.4)
i.e., the Direct Projection
Limited in Space. is the necessary condition for the local

extremum. System (1.4) makes it possible
to find the points of the possible extremum

(or a stationary point). It is possible to have cases where the function
F (Pl' P2' " , PN) does not attain the extremum, and thus (1.4) turns out to

be a necessary condition, but not a sufficient one.

In order to obtain an unambiguous answer to the question of extremums, it
is necessary to use another theorem. In it another differential of function
(1.3) is examined. This differential is the quadratic form from the differential

dp1, dp2 , ... dpN and can be written in symbolic form as

id2F dpP+ d 8N dPN F (1.5)

and in general form as
N

4dF 0 ailhih; at = aii. (1.5a)

Here the differential dpk is designated by hk. The quadratic form (1.5a) is

called positively determined (negatively determined) if, for any values of the
variables not equal to 0, at the same time this form has positive (negative)
value. The positively and negatively determined forms are combined under a /13
general designation, i.e., fixed forms. If the quadratic form (1.5a) acquires
both positive and negative values, then it is called sign variable. If in
(1.5a) the form has values of one sign, but at some point acquires 0 values, then
this quadratic form is called quasi-fixed.
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Let us now turn to the theorem itself. Let the extremum of function

F = F (Pl' P2' ... PN) be possible at point Mo (1(0) (o) N(o)o ' p .... p  Let
us examine at this point the second differential d2F/m . This differential can

be written using expression (1.5). If (1.5) at point Mo has a local extremum.

Meanwhile, if d F < 0, then the function at point Mo reaches a maximum, and if
20

d F > 0, then it reaches a minimum. When the second differential is a sign-
variable form, then at this point the function does not have an extremum. When
the second differential has a quasi-fixed form, the function can either have or
lack an extremum. Further research is required to clarify this question.

The criterion for determining the sign of a quadratic form was established
by Sil'vestr and is named after him.

The quadratic form (1.5a) is characterized by the symmetrical matrix

a (1.6)

a4 a, .. a,,

The determinants are .

A1  a 11 A2  #. ,=aa u

a N aa J 2 ... a Is

and are called the principal minors of matrix A.

In order for the quadratic form (1.5a) to be positively determined, it is
necessary and sufficient to fulfill the following inequality

A,>0 A2>OA0, , ..., AN>0.
In order for the quadratic form to be negatively determined, it is necessary and
sufficient that the signs of the principal minors Al, A2, ..., AN alternate

while Al < 0.

This is the classic method. To implement it, it is necessary to find a
solution for system (1.4). When solving gravimetric problems, this is a /14
system of transcendental equations. This system is not solved in a general form.
In every actual case it is solved by using approximate numerical methods.

It is possible to approach the minimization of functional (1.3) in another
way. Some restrictions in the form of

11



pt(P P, ... P) < 0O; t = 1, 2, .. , n. (1.7)

can be imposed on the parameters pj. The area D is determined by the system of

relationship (1.7). The problem consists of finding among the points of area D
the point P* for which the following is attained

F(P*) min F (P), P E D.
The problem formulated in this way relates to the class of problems in non-
linear programming. In its most general form this is a problem of functional
programming. Depending on the type of function F and the area D which is
determined by the inequalities (1.7), the problem can be simplified by reduction
to problems for which solution methods are known. In particular if the function
(1.2) is convex and smooth, and if the inequalities (1.7) determine the convex
area D, then this problem is reduced to convex programming.

The concept that the function is convex is very important. For convex
functions, theorems have been established regarding the criteria for the
uniqueness of the inverse problem. Let us examine some formulas and theorems
of convex function. Here they have been presented without proof. A more
complete analysis of this question can be found in [13, 27].

Let two points p(1) and p( 2 ) be assigned in N-dimensional space. The set
of points P = p(1) + t(2) _ p(l)), where t is any number within the segment

[0, 1] (0 < t < 1), is called section p(l) p( 2 ) connecting these points.

Set P is called convex if, together with any two of its points p(1) p( 2 )

all points in the section p(l), p(2) belong to this set.

Let the function F (P), P = [' P2 ' P ' . pN] in N dimensional space.

F (P) is a convex function in set P if for any two points p(1) and P(2) the
following condition is satisfied

F (P(') + t (P(') p0))) <F (P() + (1. 8)

+ t [F (P(1') - F (P('f)].

If in (1.8) the inequality sign is strictly correct, then one speaks of a strict
convexity.

The theorem which established the criterion of convexity is extremely
important. Let the function F (P), which is assigned in the convex set P be
differentiated twice. If at two points in this set the second differential

d F is a positively determined form, then F (P) is a convex function in set P. /15
Thus on the basis of an investigation of the second differential, one concludes
that the function is convex.

Why is it so important to establish the convexity of the minimized function?
The reason is the uniqueness of the minimum. The following theorem confirms this.
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The differentiated, strictly convex function F (P) which is assigned in
the convex set P can have a local minimum only at one point in this set.

It is true that, in its most general form, functional (1.3) can be non-
convex since the inverse problems fall within the class of incorrect problems
and do not have a unique solution. However, by imposing restrictions on the
form of the elementary body and by assigning some of its parameters, we can
always ensure that the solution to the problem will not come from a particular
class. This unique controlling factor ensures that the sole solution to the
problem has been achieved.

Two basic tendencies are distinguishable among the methods for solving
non-linear programming problems. One of them combines the methods of a systematic
search for a solution. Various multi-step searches for a solution are constructed.
The direction of the search is selected at each step, while the various local
properties of the minimized function (for instance, the gradient of this func-
tion) are used. The second tendency uses the random search method. Each
tendency has both strong and weak points.

The systematic method has complex algorithms. If the minimized function
has local or boundary minimums, then similarity is, as a rule, not guaranteed
between the results of the calculation and the global principal minimum. A
sampling of the initial points of the search is required in a search for the
global minimum.

In the random search method the algorithms are relatively simple, but they
require that the entire function be calculated frequently.

When minimizing (1.2) or (1.3), their relative cumbersomeness should be
kept in mind. Derivatives of the functions are computed almost without further
expenditures of time, i.e., when computing the function itself. However, not
all of these distinctive characteristics are germane to choosing a minimization
method. One should take into account the fact that the choice of an initial
approximation made by a qualified specialist who takes into account that which
is already known about the geological peculiarities of the region under investi-
gation makes it possible to obtain a solution to the problem in a previously
selected class. This latter is the decisive factor in choosing a minimization
method. In order to minimize (1.2) or (1.3), we use the gradient method of the
fast descent. Let the vector P = (Pl' P2 ' "'" PN) turn (1.2) or (1.3) into

a minimum. Then at all other proximate points which are characterized by the
(k)vectors p , the functional

SF (Pk))> F (P).

the search for the point P comprises the following: Let the initial approximation
(o) (0) (o) (o)( ) P1 ' P2 ' . PN be known. Let us construct the vector grad /16

F (P ) = (Fpl1 ... , FpN). It is well known that the function F (P) will in-

crease in the direction of the vector gradient, i.e., in the opposite direction
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this function will decrease. Through point P(O) in the direction of the vector
gradient, we will draw the straight line

P = P" - grad F (P'O)).S.. ..... (1.9)
By ascribing the various values to the coefficient X, we will obtain various
points on the straight line (Figure 2). If A is greater than 0, then the point
P will be located in the area where the function F (P) decreases. The value
of the minimized function at any point on the given straight line can be written
thus:

o r -, ,
F F (X) .

We will find the value A = X at which F (Xo) = min. For this it is

necessary to solve the equation

OF 0.
0. (1.10)

Thus the point on straight line (1.9) has been determined

'P') = P(O) -X grad F (P(O)),

at which F (P(1)) assumes the least of its possible values. Now we take the

point p(1) as the initial approximation and determine the new point P (2) All
of the calculations are reduced to the following determination of the vector
components. The calculations are carried out according to the formulas

p Pik) X (F'P), (1.11)

0+-- () X,(F,.)k,

where k = 1, 2, ... - the iteration number. First it is necessary to calculate
the coefficient Ak. If difficulties arise when setting up and solving equation

(1.10), then it is possible to make use of the approximated value Ak as deter-

mined by the Newton method. In contrast to the exact value, the approximated
value of the coefficient is designated by AkN.

(F,, ( F) (1.12)

Great interest is attributed to the value of the function F = Ffin at

which the minimization process can be concluded. We will assume that a mistake /17
in calculating the function will be due only to a mistake in the observations,
and that all calculations are carried out with considerable precision. In this
case the error can be replaced by the differential of the function

n

AF =2 [Vobse(Xi, Yi) -- Vtheo(xi, Yi)] AVobse
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Let us further assume that the difference between the observed and the cal-
culated anomalies at the end of the computation will not exceed the observation
error.

AF 2 (AVobse)',
1-1

or
Ffin = 2n (AVobse)'. (1.13)

It must be noted that all of this is correct if the perturbing geological masses
can be described exactly using approximating bodies. In actuality the equality
(1.1) does not approximate the observed function with absolute exactness, and
the minimum of function (1.2) turns out to differ from 0. If the small value of
the error in the field AV is chosen, then F . > AFfin can be obtained. Inobse min fin
this case it is necessary to minimize function (1.2) to its smallest possible
value. One should expect that, having obtained the smooth decresing sequence
(Fk), we will not attain Ffi n while F ( k ) will differ slightly from F(k + 1)

It is worthwhile to stipulate the termination of the calculation according to
the criterion of the relative difference

(k) -F(+l) A. (1.14)

The value A can be determined from the model investigations, or it is established
during the process of sampling the actual practical problems.

2. Other Variations of the Problem

There can be other approaches to comparing the
observed and theoretically calculated functions.
Let us examine several of them.

1. Let us set up the functional

F I Vobse (X, ) -Vheo(4x, yd 1 (1.15)

The latter expression can be written in a some-
Figure 2. Search For what different manner. (1.15) includes N components,
a Point Along a Vector each of which is taken at its absolute value. We
Gradient. will divide these components into two groups. In

the first group we will include those where
[Vobse (x i , Yi) - Vtheo (x i , Yi ) ] > 0, and the rest

will be in the second group. We will designate by r the number of components /18
which have turned up in the first group, and thus the number of components in
the second group will be (n - r). Now (1.15) can be written

F i[ IVobse(Xi, y) - Vtheo(Xi, Yi + (1.15a)

n

=+ t IVtieojt Yi) - bse (xi, Yj}.
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Now a specific function (1.15a) will underlie minimization. Here the
gradient method of the fastest incline can be used without any kind of re-
strictions.

2. When comparing the two functions Vobse (x, y) and Vtheo (x, y), we

select one of the fixed points (x i, yi). For it we will write equation

Ai J-ob Yi) - Vtheo (Xi, y!, P), (1.16)

where, just as earlier, P is the vector which characterizes the location and
dimensions of the geological bodies P = [Pl' P2' .".' PN "

In the initial model of the geological structure, P(O) -(0) p(o)

PN . One must find the values of P such that Ai is as small as possible.
Let P = P(o) + AP, i.e. ,

P2 P2 + AP2  (1.17)

Now (1.16) will depend only on (Ap1' AP2 , ..., APN). As a rule the function

Vtheo (s, y, P) is relatively complex, and the parameters p. belong under the

signs of transcendental function. We linearize the problem. Let us put Vtheo
(P) (at a fixed point) (xi, yi)) into a Taylor series and let us restrict

ourselves to only the linear part.
I (o) oa ov . .

Vtheo(P) ~ Vtheolp + o Ap,1 Po ± --
p
- * - (1.18)

+ 0 APN.

Expression (1.16) is rewritten thus:

A Vobse(X, Yi) - Vtheo , x , y) - AAp. (1.19)

Here

Ail = Al (x, P(o)) o= P

having accepted A. 0 (1.19) can be written in the form1

N .(1.20)SAApI = Vobse(X, Yi) -- theo (x,, yi, P() Z .
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Parameter i acquires values equal to 1, 2, ... , n, i.e., (1.20) is a /19
system of linear equations with N unknowns. If n > N, then a redefined system
has been obtained which can be written in matrix form as

AAP = 6

where
AIA 12 ... AN Ap,
AA,,2 ... A2N A

A.,A AvJ L1 ]
This system can be solved by using the least-squares method. The method

itself will relieve us of the necessity of investigating the compatibility of
the selected system [45].

Without citing any calculations, we will simply indicate that vector AP is
found from solving the system

A'AAP= A'6, (1.21)

where A' is the transformed matrix A. As is well known, this relationship
always leads to a fully defined system of exactly the same number of equations
as we have unknowns [45].

3. It is possible to introduce additional limitations into the function
which should be minimized. These limitations will play the role of regulating
parameters (according to A. N. Tikhonov). We will require that during minimiza-
tion the desired parameters do not differ so sharply from their initial values.
For this purpose we introduce into the functional (1.2) another member

b '(lPI-P, ) where A. is the constant coefficient which plays the role

of a weighting function. Wherever the version of the parameters, according to
the geological data, should be small, the coefficient X. will be selected by

the researcher to be large. If the variation of any parameter is not restricted
by the geological data, X. can be selected to be sufficiently small or equal to 0.

The basis of the final minimization is the functional

S tt obse( i'Y )7 theo(X,, .)j+ (- _ (p- po2., (1.22)

This functional depends not only on the geological parameters pj, but also on
the regularization parameters X..

The minimization method can be used to interpret various anomalies by
postulating differing forms for perturbing masses. Relatively simple relation-
ships for computers calculation can be obtained in cases where the perturbing
bodies are approximated by a group of spheres, right-angled prisms, etc. Through
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identifying the area of the perturbing body by the total of its projections, it
is possible to obtain a solution to the problem for an arbitrary contour with
an arbitrary distribution of masses.

3. Solving the Inverse Problem for a Group of Cylinders by the Anomaly Vxz /20

We will illustrate with an example the interpretation of gravitational
anomalies using the minimization method. Let an anomaly V be assigned and

xz
let there be established the possibility of approximating the perturbing bodies
with cylinders. The position and geometric dimensions of each cylinder can be
characterized by the following parameters: d is the abscissa of the epicenter,
h is the depth at which the axis occurs, and a is the excess density (Figure 3).
Here it should be noted that the derivatives have very small values according
to their mass. Therefore, changes in this parameter are small in comparison
to the others. This kind of inequality in changing the parameters leads to a
very slow convergence of the calculations' iteration processes. We will express
the mass by means of a linear parameter.

The mass of a unit of the cylinder length is
0 determined by the relationship M = nR2G. As is well

x known, it is not possible to determine a and R
2 2separately. We will designate a.R2 = and we will

determine parameter t in the future. In order to
z be able to take into account the sign of the excess

density, we accept
Figure 3. Values of
the Parameters Charac- o =sig
terizing the Location Here
of a Cylindrical Body. 1, if >0,

-- , if <0.

Thus the position and dimensions of each cylinder
determine the following four parameters [t, h, d, sign (a)]. We will set up
the function

F- V obsex[()-4dik0 ' - . (1.23).. .. ., , [ (x- - d i + l
We will consider the parameters of sign (a.) to be constant, and then m

three-dimensional vectors will be unknown:

P. = [ti, h., d ].

We find the components of these vectors, of which function (1.23) will
become the smallest possible.
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We will assign the initial approximation: 0) [(0) (0) d(0), sign
(aY)]. We will determine the following approximations by the formulas

4"k+ " = )- Xk (Ftj)k, (.24)
(1.24)

hIk+I) hikl - Xk(Fih,

d " - 1, F1. 2, ).

The derivatives will be expressed thus: /21

n'

Fd; 1 -1 S 4sigw l) k - -

i=, [(xi -di) + h; '

where

8,= Vx obseX,) - Vx theo(x).

In the last relationships

M thl (X - di)T,, thox) = 4nk s ign (a,)
th .... (x - di) + hll

We will calculate the coefficient X by the Newtonian method of Newton
(1.12).

4. An Example of Solving the Problem

We will examine the use of the method in the following examples. Let an
anomaly of the horizontal gradient of the force of gravity (Figure 4) be given,
and let it be established that the perturbing geological bodies can be related
to two-dimensional bodies, for instance according to the method of A. A. Yun'kov
[81]. Even a cursory analysis shows that the perturbing masses are scattered
along the profile. It is possible to distinguish three anomalously shaped
objects. Let us assume that the problem has been posed of evaluating individually
each geological body, i.e., determining its mass and center of gravity. It is
possible to approximate each geological body as a cylinder in order to solve
the problem. The parameters of three cylinders (9 magnitudes in all) form the
basis of the determination. Let us fix the most characteristic points of the
observed anomaly along axis Ox. In all, 13 points are distinguished, which
have been reduced to tabular form (Table 1). Taking into account the dimensions
of the anomaly, meters have been adopted as linear units. Using the most general /22
premises as a basis, we will select the model of the first approximation, the
parameters of which have been cited in Table 2. (Some remarks of a methodological
nature on the calculation of these parameters will be given in the second chapter).
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The data in Tables 1 and 2 are the
initial data for solving the problem.
The results of the solution are given
in Table 3. Here all the intermediate

20 eoetvoes results of the calculations from iteration
to iteration (some iterations have been
omitted) are shown.

The function at the initial values
A of the parameter was found to be equal

to 18768 eoetvoes2 . The function F in
the following iterations acquires these
values: 12449, 7369, 4376, 2780,....

We will determine the value of F at /23
which it would be necessary to conclude
the computation. Let us turn to formula
(1.13). In our case n = 13. If we

z accept that the error in the observation
is 3 eoetvoes, then Ffin = 234 eoetvoes 2 .

Figure 4. Anomaly Vxz, as Caused In the 26th approximation F26 = 153
2by Three Perturbing Bodies. eoetvoes2  and the value of the unknown

vectors is P1 = (147, 199, 302), P2 =
(82, 137, 600), and P3 = (148, 198, 1049). After the 37th approximation, we

obtain F3 7 = 31 eoetvoes and P1 = (149, 200, 301), P2 = (86, 144, 600), and

P3 = (149, 198, 1050).

Let us assume that the cylinders have excess densities o1 = 1, a
0.8, and a3 1. In this case it is easy to calculate the radii R .

We obtain R = 301, R2 = 97, and R3 = 149.

The cited anomaly was calculated for three cylinders which had the following
parameters: P1 = (150; 200; 300), P2 = (89.4; 150; 600); and P3 = (150; 200;

1050).

TABLE 1.

No. of i

200 300 400 500 550 600 650 800 950 1050 1I 1350

Vx 74 168 32 -88 -5 13 38 3 159 123 -17 -162

20



TABLE 2.

No. of the f
perturbing t h a
body

1 120 200 320

2 60 100 570

3 130 220 1040

TABLE 3.

Parameter No. of Approximation
of the - _

Perturbing I I "
Body 0 2 314 S 1S 1 26 f3 >

t, 120 123 129 132 136 137 139 138 139 141 141 142 143 142 143 146 144 145 146 147 149 150

hi 200 198 194 192 190 190 189 193 192 192 194 194 194 195 195 195 195 197 197 199 200 200

d, 320 319 316 313 309 306 306 305 306 306 305 305 305 304 304 305 304 303 304 302 301 300

t, 60 54 53 57 58 65 62 71 68 66 73 72 70 75 73 72 74 79 78 82 86 89,4

h, 100 104 105 104 105 106 109 111 113 115 117 119 121 122 123 127 126 129 130 137 144 150

d, 570 573 578 583 588 594 594 596 596 596 597 597 597 598 598 598 598 599 599 600 600 600
t
3 130 134 141 146 149 149 149 148 148 148 148 148 148 148 148 149 148 147 147 148 149 150

h3 220 218 213 209 206 205 205 203 203 201 201 201 20 201 200 200 200 199 199 198 198 200

d3 1040 1040 1042 1043 1045 1047 1048 1049 1049 1049 1049 1049 1049 1049 1049 1049 1049 1049 1049 1049 1050 1050

F 18768 12499 7369 4376 2780 2378 1899 2559 1628 1302 1709 1092 909 1098 737 823 578 603 396 153 31 -

5. Nature of the Convergence of the Fast Descent Method When Solving Inverse
Problems For a Group of Cylinders

Let us examine Table 3 in which the results of the computations are cited.
At first the function decreases. In the seventh iteration a disturbance is
observed in the function's smooth progression. Meanwhile, the gradient of the
function's change in the following step acquires its largest value. After the
10th iteration, one again observes an increase in the value of F which must be /24
minimized. Sudden changes in the values of the function become relatively
frequent from this point on.

What is the cause of the sudden changes?

As was noted earlier, a vector gradient is sought by the fast descent method.
The greatest change in the function occurs in the vicinity of the selected
approximation along this vector. At the very beginning the change is sharply
reduced, and then, reaching a minimum at some certain point, it begins to in-
crease. The problem is to determine the point at which the function attains the
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minimum. The coefficient Xk also determines this point. However, this is quite

difficult to calculate. The approximated value of Ak, as determined by the

Newtonian method, does not always provide the necessary precision.

Let us again turn to the example cited in the previous paragraph.

In each iteration we carry out several computations of the function F along
the vector gradient. For this we will assume that Ak = SXkN. We will give

parameter s the values 1/4, 1/2, 3/4, 1, 5/4, and 3/2. Of the six values of
the function we will select F = Fmin  and the Xk (values) which correspond to /25

this function. We will use this coefficient in future calculations of the
parameters of the cylindrical bodies. The calculations made in this manner
are shown in Table 4.

TABLE 4.

Parameters Nos. of the Approximations ,
of the o

Body , 17 I 22 23 24 25 30 35 37 39 40 1

S 120 127 135 137 140 '4.7 142.4 143.5 11,.5 45.7 146.3 14 147.1 I 2.2 145 147,3 146.2 147.9 148.8 149 I14,2 149.4 150
, 20 1 19 19 9 193 1 .1 195.4 7 197.2 197.5 197. 198.6 197 196.4 197.6 198.1 199.68 199.6 199.8 19.7 200

S 320 317 310 308 30 35 3 301.4 301,2 33.4 302.8 302.8 302,7 303.4 3036 3026 302,1 301.8 300.9 300 300,6 300.6 300
, 0 47 57 01 8 70,6 73,5 74,4 77,1 78,4 80 7,6 82.6 79,7 81,6 81,5 83.4 86,6 86,9 87,6 87.5 89,4

I 100 107 106 107 113 116.5 120,4 124.1 126,4 131,3 133.5 134.1 135.2 134,1 136,1 136,6 138.1 1108. 145 145.7 146.7 146,9 50

0. 570 576 5 0 597 50 197 597,8 598,1 5 96.4 598,7 599 599,2 599 598,9 599,1 599,6 599,7 600.1 600,1 600,2 600,1 00
30 137 149 149 148 148 148,1 147,8 147.7 149.1 148 147.4 147,7 147,5 147.4 147,3 147,9 147.7 1483 14 5 148.7 148.8 50

, 220 216 207 206 203,5 202.4 201,3 209.3 199,9 198 1986 19 198 1 198,6 198.6 198,4 198,2 197.9 198 198,2 198,4 198.6 1986 200

, 1040 104
-l  

1041 1046 104 1018.8 1048.8 1018,9 I! 104 10 51 1049,2 1019,3 1049.3 1049,4 1049,4 1049,3 1049.5 1049,8 1049,8 1 049.8 1050

11 - 0.02102 0,02711 0.01157 0.0810 0,07934 0.07634 0,1064 0,058 0.0304 .2098 0.2152 0.1278 0,1043 0.01165 0.1560 0.1237 0.1060 0,3996 0.3450 0

Values of the Function F

14697 27 7230 1471 850 672 531 I 276 244 215 955 737 192 298 84 31 1 J 13,9 1 -
5 - 12449 Z269 1697 131, 1611 72 579 7 21 288 24 3437 558 187 89 23 , 7 -,75 - 11137 3319 2 86 2386 1901 13 1201 7 492 370 407 374 7673 4 219 195 141 0 33

10728 3627 3431 3568 2835 2055 1836 l. 623 2i0 003 547 13690 318 288 261 208 36 48 2121 -
1,25 - 1032 4242 1457 3272 4260 3018 '723 1332 831 724 877 781 21537 256 396 357 299 47 70 29 I -

1.5 - 11,98 5121 9724 7529 11119 428 872 1821 l111 1000 1230 1071 31283 232 543 481 416

Fm in 18768 10728 3319 2735 1171 1164 896 672 6551 43 276 241 2 9 55 232 1 187 160 84 28 19 13.7 9.7 -

Commas indicate decimal points.

Figure 5 shows graphs of the function change along the vector gradient.
In the first iterations the minimum of the function corresponds to the value
Xk = XkN(s = 1). However, right after the second approximation the function F

acquires its minimum value at Ak = sxkN' where at first the parameter s = 3/4,

then s = 1/2, and s = 1/4. It is evident from curve 7 that the calculated
value of the function F at s = 1 will be larger than in the previous approxi-
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mation. Solving the problem with the fixed value s = 1, we also obtained
sudden jumps in the changes in function F (Figure 5, b).

FA) .IOJ

F(s) F) F(5) 102

10 10 o-
2

011 0i 0

a b c d

Figure 5. Change in Function F Along the Vector
Gradient (Various Iterations).

One must also consider one other peculiarity. After the sharp jumps in the
value of the function the next iteration, as a rule, is accompanied by a large
value for the coefficient s. Thus it is evident from Table 4 that, after the
21st approximation, a malfunction occurred in the machine (the calculations
were not being re-checked), the smooth decrease in the function was disturbed,
and the 22nd approximation became worse than the previous one. During cal-
culation of the 23rd approximation the value of the coefficient was s = 3/2. /26
This means that the vector had raised considerably. The change in the function
along the vector is illustrated in Figure Sc. In following iterations, when
the value of the function is small, its change along the vector gradient becomes
less sharp (Figure 5d).

The example cited indicates that it is necessary to determine the coeffi-
cient s during the calculation. Henceforth, all computer programs have been
set up with allowance made for the calculated value of s.

6. Increasing Convergence of the Fast Descent Method While Solving the Inverse
Problems of Gravitational Survey

The nature of the function change along the vector gradient was established
in the previous section. In this vector, the function F which must be minimized
is dependent upon one parameter, which is the magnitude of s. The problem lies
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in finding the value of parameter s at which the function F along the vector
gradient acquires its maximum value. It is possible to come to a conclusion
about the nature of this function by using the fast descent geometric inter-
pretation method. Let us assume that the function F changes according to the
parabolic law

F as2 + bs + c.
(1.25)

This approximation agrees completely with the computed results shown in
Figure 5.

We will find the s at which F (s) = Fm. . For this purpose it is sufficient /27
DF mnto find the root of the equation as = 0. By differentiating (1.25), we find

2as + b = 0
From this

b
s -

2a

In order to compute the unknown parameter s, it is necessary to find co-
efficients a and b in the equality (1.25).

We know the value of the function F (0) = F . At s = 0 the functiono
acquires the value of the preceding computation. In order to find coefficients
a and b, we compute the function F (s) at the two values s = sl and s = s .

Let F (sl) = F 1 and let F (s2) = F2 . Inserting these values into (1.25), we
obtain

F - c,

F, = as2 + bs, + Fo,

From the last two equations we find a and b, and after this it is easy to
determine parameter s.

s (F1 -F,)- s (F, - Fo)
2 [s,(F - Fo)- s(F, Fo)) (1 .26)

Thus the following calculation method is recommended. We will designate
the previously determined value of the function by Fo . We compute function
F (s) at s = sl and s = s 2 . We obtain F (sl) = F1 and F (s2) = F2 . We compute

coefficient s according to formula (1.26), and then compute the value of
function F (s).

There is a question about the choice of the values s1 and s2. Let

s1 < s2 . The best result in searching for the minimum of the function F (s)
should be expected when sl < Smin < s2. In choosing values sl and s2, it is
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recommended that one use the value s = spr' as calculated in the preceding

iteration, and accept s1 = 1 /2Spr , and s2 = 3/2 of spr. In calculations of the

first iteration, one can assume that sl = 1, and that s 2 = 2.

7. Another Algorithm For the Minimization of the Function of Many Variables

We have established that, when solving the inverse problem, the minimization
is based on the function

F = F (p, p2 .... PN). (1.27)

The algorithm described here is based on the fast descent gradient method

[10, 22]. Let us establish some initial value (p 0), p2 )  
, p ) by which /28

a certain point is fixed in N-dimensional space. Now we choose one direction
in such a way that it coincides with the vector gradient, but such that its
direction is the opposite of the vector gradient. If a function increases as
much as possible along the vector gradient, then in the other direction it will
decrease. The chosen line is described by the directing cosines

cosa= a.

Function (1.27) along the vector gradient can be written like the function
of one variable 1. For this purpose it is necessary to introduce into (1.27)
the parameters

=p P') +- I cosa, (==1,2, ... , N)' (1.28)

Thus along the selected axis F = F (1).

Now let us pose the problem of finding the value 1 = 1* for which F (1*) =
min. For this purpose it is necessary to solve the equation

F' (I) (I)= 0. (1.29)

The new designation of the function o (1) has been introduced for the sake
of convenience in future work. It is necessary to find the root of the trans-
cendental equation (1.29).

We use the reduction method of solving transcendental equations to solve
differential equations [58].

Thus, the equation is given

P (1) = 0 (1.30)
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Let us examine the function

t O.(. (1.31)

The value 1 = 1* which converts this function to 0, is the root of equation
(1.29 . If function (1.31) has the reverse form

S8 L(t), (1.32)

then the task of finding the root of equation (1.29) is reduced to computing
function (1.32) at t = 0 because

P - L () = L(O). (1.33)

The derivative of function (1.32) is like the reverse (1.31)

dL (1.34)1
dt = q'() (1.34)

Thus we have the differential equation of function (1.32). Having selected
the arbitrary value 1 = 1 and having inserted it into (1.31), we obtain the
initial conditions for solving differential equation (1.34) at t =t = (1 ),
1=1. 0

0

Only one value of function (1.32) 1 = L (0) is of interest to us. /29
The integration interval is determined by

At = ifn ni= 0 -- to -= -- (o).
It is completely natural to select the initial value 1 = 0, and then

At = -q(O).

If we use the Runge-Kutta method to calculate 1*, having accepted a com-
putation step equal to At, then it is necessary to compute

k, -_ 0) -- o) - ~f(o) -0)

Then

P k+ 2k2 + 2k + k4).

Now new values for the unknown magnitudes are determined according to
(1.28), by

p p°) + * cos cil. (1.35)

If, at the computed values of the parameters, the function is sufficiently
small, then the computation is complete. The formulas (1.35) give the final
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results of the solution. If not, the iteration cycle is repeated. This point,
the coordinates of which are calculated according to formulas (1.35), is accepted
as the initial point.

8. Program For Solving the Inverse Problems by Using the Minimization Method
(Fast Descent)

In its general form, the entire program is written in algorithmic language
(ALGOL-60). It consists of individual blocks and constructions. The magnitudes
encountered in the program are described at the start of the program. We will
subsequently discuss these magnitudes in somewhat more detail.

In order to solve the inverse problem, numerical information has to be fed
into the computer. This information consists of several groups. The first
group is the information which describes the observed gravitational field and
contains the coordinates of the points and the value of the field at given
points XT [l:n], YT [l:n], and GNABL [l:n]. The second group contains the
parameter values of the bodies which approximate the geological model: PP1
[1:m], PP2 [l:m], ... PPT [l:m] and P1 [l:m], P2 [l:m], ... PK [l:m]. In
massifs PPI, PP2, ... PPT [l1:m] the-parameters to be determined (the variable
parameters) are unified. They belong to functions (1.2) and (1.3).

Massifs P1, P2, ... PK [l:m] determine the geological model but, when the
problem is solved, they are confirmed and take on the role of constant parameters.

Since the dimensions of the first and second group can vary when solving
the various problems, it is necessary to put into the computer memory the /30
values of the magnitudes n, i.e., the number of points which are used in
solving problems m, i.e., the number of perturbing bodies through the use of
which the geological model is approximated. With regards to the magnitudes
(T + K), i.e., the general number of parameters in an elementary geological
body, this is constant for every actual problem. For instance, if a geological
body is a made up of cylindrical bodies, then T + K = 4, T = 3 (these are
parameters t, h, d) and parameter K = 1 is sign a. If the geological model is
described as a group of straight projections finite in space (Figure 1), then
most often T = 1 (this parameter is d, the position of the projection's
boundaries). The magnitude K = 5 (a, h, H, 11, 12), these are all considered

constant and are not subject to change during the minimization process (1.2).

In addition, values Ffin and Afin must be placed in the machine's memory.
These magnitudes determine the end of the computation cycle according to
criteria (1.13) and (1.14).

Value Ffin can be computed, but magnitude Afin is assigned. This magnitude

must be determined during the process of sampling the actual practical problem,
or it must be established from research with models. Most often this magnitude
varies within the limits of 0.05 - 0.02. Thus, the massif of the initial value
is determined within the operational memory device in order to solve the problem.
We will designate this MI . The dimensions of this massif depend on magnitudes n
and m.
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Data fed into the computer is printed. This is necessary because one might
want to check the initial data. After all, even an error in the numerical data
fed in which at first appears insignificant can distort the intent of the in-
terpreter, and the problem will not be solved.

Now we again turn to a description of the variable magnitudes in the
program. The variable indices are designated by the symbols i and j: i changes
from 0 to n, and j changes from 0 to m. Magnitudes SKL, TKL, P35, and P7 are
determined within the program itself. The first two magnitudes are needed to
transmit directions to switches KLM2: = AO, Al, A2, A3; switch KL37: = T6, T14,
D. Near the switch designation, marks are indicated by means of which several
instructions in the program are designated. The magnitude SKL, during the
process of solving the problem, can acquire a value from 1 to 4. Depending on
the value of this magnitude, switch KLM2 sends directions to one of the
operators with mark AO, Al, A2, or A3. Magnitude TKL can acquire values from 1
to 3 during the calculation process. The entire numbers P35 and P7 are also
used to transmit directions.

The massifs of the operative numbers are then described. First come the
coordinates of the points and the values of the field at the given points, and
then come the parameters of the geological model. In order to record the in-
termediate data, two groups of massifs, M2 and M3, are distinguished. Within

group M2, massifs PP1 and 2, PP2 and 2, ... PPTM2 [l1:m] are distinguished in

order to record the results of the calculations in the regular iteration of the
geological model's parameters. In each cycle of the calculation process, after
changes have been made in the geological model, the gravitational field Vtheo /31

(xi, yi) is computed at n points. In the program this massif is designated as

GTM2 [l1:n]. The calculated values of the geological parameters and the cal-
culated gravitational field (massifs PPl and 3, PP2M3, ... PPTM2 [l:n] and
GTM3 [l:n]) are re-written into massif M3. Symbols FPR1, FPR2, ... FPRT [l:m]
designate the massif of the values derived from function (1.2) according to the
desired parameters.

Then follows a description of the operative number. S has already been
indicated, Ffi n and Afi n are introduced at the same time as initial data. They

are described by the identifiers FKON and DELT. We will discuss the value of
the other numbers later.

Now let us go to a description of the program itself. The values corre-
sponding to 1.0 and 2.0 assume magnitudes s1 and s2. The whole number P7

receives the value 0. Then follows the component operator, described by the
sign M. The values of the variable parameters in massif M2 are rewritten within

the cycle. Variable P35, SKL, and TKL acquire the value 1, and directions are
given to the operator assigned the symbol A.
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At the very end of the program are located four groups of operators, next
to which are the symbols A, B, C, and K. They are closely interrelated and
are essentially specialized sub-programs.

The symbol A designates the block in which the values are computing

xt i, Yi) = Vi theo(xi, Yi).

Under the symbol B is written the block for computing the function

F = 1 Vobse (x,, Y,) - Vheo (xi, y)l.
i=1

The block operates four times in one computer cycle. Switch KLM2 (switch KLM2:
= AO, Al, A2, A3;) is located here. The function F is written in turn into
four different memory cells.

The next block (symbol C) is activated only if the number P35 is not equalto 0. Here the derivatives of the function F are computed according to the
desired parameters. In each cycle these magnitudes are calculated only once.
This means that every time, when switching to A (and this means to block B as
well which follows it), the values of number P35 must always be noted.

Using operator K, an output is made from the unique sub-program into the
necessary position in the basic program.

It is worth noting that operators A and C cannot be actually described in
the general program. In each case its function will be Vj theo (xi' yi ) , and
this means that they will be various values of the derivatives of function F.
When examining the actual problems, it is necessary to describe these blocks.

One moves from the sub-program with the symbol A - B - C - K to operator
T6 at (TKL = 1). The computed value of function F, the massif Vtheo (xi, yi), /32
and the values of the variable parameters are rewritten into massif M .
Directions are then given to operator T9. The decision is then made to print
the direct problem. Thus, there is the possibility of comparing Vobse (xi, yi)
with Vtheo (xi, yi) computed for the model of the first approximation. Here

the entire computation process can be stopped, and a corrective factor can be
introduced into the model of the first approximation of geological structure if
the interpreter decides that the correction was not constructed satisfactorily
earlier. By means of operator P7: = 1, access to operator T9 is closed in the
future.

In block T10 the coefficient AkN is calculated. Then (operator T11) one
determines the values of the desired parameters for s = s1 and s = s2' while
each time reference is made to the sub-program (blocks A - K). Before moving
to block A, parameters P35 and TKL are given values corresponding to 0 and 2.
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This is necessary in order to avoid computing the derivatives (block C), and to
return to operator T14. Here F = Fmin is searched for, and the values of the

parameters in the geological model, as well as the massif Vtheo (Xi, yi) which
correspond to them, are rewritten into massif M3 .

The coefficient s is then computed according to formula (1.26), and the
values of the geological parameters are again computed (during this process
instructions are again transmitted to sub-programs A - K). Symbol D designates
the operators which minimalize the calculated function F. Some relationships
are then checked. If Ffin (which has identifier FM3) is equal to Fo, then this
is evidence of the fact that the function has not decreased in the given cycle.
We have reached the possible Fmin for concrete geological data. The computation
should be finished. mn

The end of the computation occurs when Fmin is less than or equal to Ffin
or when the character of the function's monotonic progression is sufficiently
small. Meanwhile the results of the minimization are printed out: the values
of parameters, the collected function, and the function F itself. (symbol DI).

If none of the described criteria have been fulfilled, then it prepares to
move on to a new iteration and directions are transmitted to blocks N.

Minimization Program for Functionals

Begin
integer n, m, i, j, P7, P35, SKL, TKL, T,
real array XT, YT, GNABL [L:nj,

PPI, PP2, ...PPT [1:m),
P, P2,... PK [:m],
P: PIMSI P2M2, ... PPTM2 [I:m],

PPM3, PP2M3,... PPTM3 [1:mj,
GTM3 ihmi],
FPRI, fPR2, ... FPRT fl:m];

real FKON, DELT, FM2, FO, Fl, F2, FF,
FM3, LAM, SI, S2, SW;

switch KLM2:=AO, Al, A2, A3;
twitch KL37:=T6, T14, D;

Input n. m; rea
- array , YT, GNABL 1:n, /3

PPI, PP2, .,. PT [l1:m],
P1, P2, ... PK l:m end'

Printout Begin real array XT, YT; GNABL l:n,
PPI, PP2, ... PPT [l:m],
P1. P2, ... Pki I:ml end

Begin Sl:= 1.0; S2;:~=2.0; P7:=0 end
N: Begin for JI step I until min do

Begin PPlM2j]:=PPji]; PP2M2IjJ:=PP2j]; ...
PPTM2[j]:=PPT Ij] end
P35:= SKL:=TKL:=l; go to A end

T6: fo := 1 step I until m do
Begin PPlM3[jI:= PPM2[J]; PP2M3[jJ:= PP2M2[jJ;

...PPTM3j]:NPPTM2[j] end
FM3:==FM2;
for i:- l step I until n do
GTWM1il:=GTM2[il;
if P7 = 0 then go to T9 else go to T10:
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T9- Begin- P7:- 1;
Printout real F ayGTM[2 :n]) end

TO BegIeal sun KW;
... :r- ....sum:i0.0

for j:- I step; Iintil m do
Begin KW:-FPRlil 2 + FPR2ji t 2 ... + FPRT[JI t 2;

sum :=sum+KW end
LAM:=FM2/sum end

T4l: :for SW:-S, S2 do
Begi for j:-1 step I until m do
Begi PPIM2 [j]:=PPI [j] - SW X LAM X FPRI[i];

PPTM | !:-PPTI - SW x LAM x FPRTUI end
P35:-0; TKL:= 2; go to A;

T14: of FM > FM2 then
Begin PM3:-FM2;
for j:- I step 1 until m do
Begin PPIM3 Ijl:=PPIM2 fj];

PPTM3 (il:-PPTM2 tIt end
for :-I Ip until n do

:OT-IM3 [ij:GTM2 [(] end end
iSW:=(S2 X 2 X (FI - FO) - Sl X S1 X (F2- FO)/
4.0 X (S2 x (FI -- ') - S1 X (F2--F0)));

-r I:l ste 1until m do
$ela PPlM2IjJP PI(jj -SW X LAM X FPRI[];

PPTMZ]J - PPTIJ] - SW X LAM X FPRT[j] end
TK .- 3; go to A;

- if FM > FM2 ten
Begin FM3:FM2;

S .for i:= 1 ster I until n do
' GTM3[]:- GTM2[ll;

for j:= l step I until m do
Begin PPIM3J]:= PPIM2(j];

PPTM3Ij]:= PPTM2Ijl end
if (FM3 = FO) V (FM3 < FKON) V (abs (((FM3 - FO)/FM3)

Bg _ <DET} then go to DI; - - GTM3 i /34
BeginPrintout FM3 on key transmit directions to printout array GTM3 [:n, /34

PPIM, ... PPTM3I1:m)l end
for j:-Il step 1 until m do
Begin PPIIj]:= PPlM3j];

PPTrj]:=PPTM3[j end
Sl:=0.5 x SW; S2:-1.5 X SW; go to N;

DI:PrintoutFM3; array GTM3 I :n],
PPIM3 II:mI

PPTM3 I[ l:m];) Stop I
A: Begin real array DGT Il:mI; description Vi;

for 1:=1 step I until n do
Begin GTM2 lil:=0.0
for j:= 1step I until m do
Begin DGT[j]:=Vi (PPIM2, ... PPTM2, PI, .... PK, XT, YT);

GTM2[il: = GTM2 [i] + DGTj] end end.
B: Begin real F, RAZN, RAZN2;

F: - 0.0;
for i:-=1 step 1 until n do
Begin RAZN:=GNABL[iJ - GTM2 [Ii];

RAZN2:=RAZN x RAZN;
F:=.F + RAZN2 end
FM2:F; go o KLM2 ISK(LI;
AO: FO:=F; go to L1;
Al: FI:=F; go to LI;
A2: F2.=F; go to LI;
A3: FF:=wP;
LI: SKL:= SKL + I;
if P35 - 0 then go to K end
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C Begin real description 1Y FPRT;
for j:= step I ti.m do
Begin FPRIIjI:.. FPRTifjIaG
for i: 1 step I until n do
Begin fllil:-fl

rni:-r'
FPRIIJI:=FPRIlj] + fill

FPRTIjl:=FPRTIj] + IfTi] end end end
K:go to KL371TKLl end end
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CHAPTER II /35

ESTIMATING THE SIZE OF PERTURBING BODIES' EXCESS
MASSES AND CENTERS OF GRAVITY

1. Solution of the Inverse Problem of an Anomaly in Gravitational Force for
a Group of Spherical Perturbing Bodies

Let an anomaly in the force of gravity be given. Let us assume that the
perturbing masses are isolated bodies. Some of them can be located relatively
close to one another, thus creating a general, complicated picture of a gravity
field upon the surface. In order to estimate approximately the location and
dimensions of the perturbing masses, we will identify their form as spheres.
The position of each sphere can be characterized by these parameters: x0 , y0
are the coordinates of the epicenter, h is the depth to the center, and M is
their excess mass.

In an observed field it is almost always possible to establish a number
of perturbing objects. We will designate by M the number of spheres by which
the perturbing bodies are identified. Now the observed gravitational field
on plane xOy can be approximated using the following formula:

MJ) (2.1)
- I(x - x0 l)' + (v - ve)' + A'J*

Is is most convenient to express linear values in kilometers. We will
consider the excess mass in units of 109m. For instance, if the excess mass
is 12 - 101 0m, then the formula should be written as M = 120 units. When
selecting units of measurement in this way, the coefficient k in formula
(2.1) must be accepted as equal to 6.67, and the gravitational force anomaly
will then be expressed in milligals.

Each sphere is designated by four parameters. Four M parameters go to
make up expression (2.1).

In the observed field we will fix N points with coordinates (xi, yi).

We will include in the number of these points the most descriptive points of
the gravitational anomaly. We will establish the function

F = &Agobse ,x, y) - Agtheo(L y)1'. (2.2)

The function Agtheo (s, y) is determined by formula (2.1). Relation-

ship (2.2) contains four M parameters (Xoj, y oj, h., M.), j = 1, 2, ..., m.
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Of the total sum of the proximate values of these parameters, we will /36
choose those which can convert function (2.2) into a minimum. We will mini-
mize function (2.2) by using the fast descent method. All computations are
reduced to a sequential determination of parameters according to the formulas

(k+l) (10 '

hc+k =y -- kk (Fh)k,
Y(2.3)

where k is the iteration number.

The computation model was described in sufficient detail in the previous
chapter. Now we may cite only values for derivatives of functions (2.2)
according to the desired parameters:

F 0 = 1 kMh, N I- 0 --

Full, 6kM hl, [-

(2.4)
2k 1 61 (x - x -i)2 ( - gj ? hi

- M (x . xd)2 -- (Yi - Y;) + (24

FM, = --2kh, -
[(At - A603 I .. - Yet) -I - :lit '

where 6. = Agbs (x y.i) - Agtheo(x y.i).
I 1obse(i 1theo(i

It should be noted that the inverse problem for a group of spherical
bodies leads us to convex programming. This follows from the theorem of
V. P. Zidarov [116]. Let the distribution of the anomalous field of gravi-
tational for ce be known on plane xOy (V = 0), and let it be established
that the anomalous geological objects can be approximated by N spherical
bodies, each of which has excess mass Mk.

Let us assume that the centers of these masses are concentrated at
points Qk (k' k' k) . We examine the integral

N 2

U= Ag(P)- R3 ds.I
s k-[

where M ~k is the value of the gravitational force from the spherical

R1 /37

perturbing bodies at point P (x, y, 0) of plane S, and R.= -- + -(i- 1)'
is the distance between points P and Qk"
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It is proven that there exists only one position of points K at which
U has its minimum. q

2. An Example of Solving the Inverse Problem

Figure 6 shows a gravitational force anomaly. Here four perturbing
bodies are quite clearly distinguished. The position and size of the excess
mass can be characterized by 16 parameters. Let us establish the beginning
of the coordinates at some certain point in the field. We will superimpose
coordinate axes Ox and Oy on the plane where the anomaly has been determined.

Figure 6. A Gravitational Force Field Caused
by Several Isometric Masses.

We will confirm N points which would best describe the observed field.
We include in the number of these points the field's extreme points, and some /38
points in the area where the field changes monotonically. These points are
noted by circles. Numbers have been placed next-to them, indicating the
observed value of the anomaly and the coordinates of the point. We will
record the coordinates of these points and their corresponding gravitational
force anomalies (Table 5). In all 31 points (n = 31) have been fixed.
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TABLE 5.

Coor- Coor- Coor-
dinates dinates dinates

2 1,5 0 3,68 13 -0,5 -2,0 1:04 23 2,0 0 5P.K

2,0 3.0

3 2,5 0 2,82 14 -1,0 1,0 167 24 -1,0 0 2,8
4 4,5 0 0,48 15 0 2,5 1,03 25 2,5 -2,5 4,13
5 0 -1,0 3,19 16 0,5 1,5 2,35 26 2,0 -2,5 5,41
6 1,0 -1,0 3,08 17 15 1,0 3,40 27 3,0 80
7 3,5 -1,0 1,19 1A 2.0 20 7,57 28 20 30 1ta
8 1,0 -2,0 3,14 19 3,0 0,5 1,58 29 0 1,0 3,19
9 2,0 -2,0 73 20 1 4, 0I0, L

10 2,t -3,5 1,37 21 2,0 -1, 4, - 4,0 1 1
11 -30 0 0,32

Commas indicate decimal points.

In the observed field we will determine the initial values of the per-
turbing bodies' parameters. We will establish the coordinates of the per-
turbing bodies' epicenters on the basis of the field's strongest points,
Then we will examine the anomaly from each point individually. We will con-
struct a graph of the field, according to its most descriptive profile. We
will determine the depth to the center of the masses according to the well-
known relationship h = 1.334 x1/ 2, where x1/ 2 is the distance from the point

of the field's maximum to the point where Ag = 1/2 Agmax . It is possible to

determine the size of the excess mass according to the relationship
M = 150 h2 Agmax . Here the anomaly is expressed in milligals, the depth is

expressed in kilometers, and the excess mass is expressed in millions of tons.
In our example the initial approximations were deliberately made worse than
those obtained through computation. We will reduce the geological premises
into a single table (Table 6). We will not compute the value of the function
F at which the computation should be ended. We will make use of formula (1.13).
We will assume the observation error to be equal to 0.25 milligals. In this
case

F = 2 * 31 * 0.0625 = 3.88 mgl

TABLE 6. In Table 7 we have shown the change /39

of the minimized function from itera-

tion to iteration. The computations
Sinnits . continued until the seventh approxi-

) X Y h oflO mation where F7 = 2.99 mgl 2 . This
corresponds to an average deviation

. of the calculated field from the ob-
1 0 0,9 0 0,9 served field of 0.23 mgl.

2 2,0 2,0 0,9 0,85
3 2,0 -2,0 0,9 0,85

4 1,5 0 0,25 0,3

Commas indicate decimal points.
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TABLE 7.

Number of
Approxi- o 1 ! 4 
mation

F 925,1 147,2 15.6 12,7 9.33 6,84 4,55 2,99

Commas indicate decimal points.

In Table 8 the results of the calculations are shown. Since a theoretical
example was examined, it is possible to compare the observed parameters with /40
those which were assigned when computing the anomaly. The latter are given
in Table 9.

TABLE 8. TABLE 9.

Number of the Perturbing Body Number of the
Perturbing Body

x -0,02 2,01 1.99 1,99,X o.oo 22.0 0--2o I o.oo 0 X °y 0,00 2,0 -2,01 0,00
h 0,99 0,98 0.98 0,58 .0 1.0 10 05
M 1.02-1 1,04.10 0,179109 1 10 10 0

Commas indicate decimal points. Commas indicate decimal points.
In Table 10, the gravitational force field selected at the 31st point

is compared with the observed values. Here are also given the values of an
anomalous field from bodies of the first approximation.

TABLE 10.

E Coor- Value of Ag . Coor- Value of R
Ss n the After dinates fter

onitial the 7th Initial the 7th 01
" Y pprox. Approx. Approx. Approx

1 0 0 7,94 774 773 7 ,5 10 3,00 332 3,40
2 1,5 0 3,39 3,86 3,68 18 2,0 2,0 7,33 ,59 7,57
3 25 0 164 2.98 2,82 19 30 05 1,14 1
4 4.5 0 0,30 0,47 0,48 20 40 4,0 025 0,32
5 0 -1,0 2,76 3.13 3,19 21 20 -1,0 2,98 3,55 3,56
6 1.0 -1,0 2,70 3,03 3,08 22 2,5 -1,0 2,29 2,85 2,88
7 3,5 -1.0 0,89 1,15 1,19 23 2,0 0 4,34 5,41 5,50
8 1,0 -2,0 2,66 3.12 3,14 24 -1,0 0 2,45 2,85 2,82
9 2,0 -2,0 7,33 7.58 7,57 25 2,5 -2,5 3,59 4.,08 4,13

10 2,0 -3,5 1.07 1.35 1,37 21, 2,0 -2,5 4,90 5,44 5,41
11 -3,0 0 0,24 0,31 0,32 27 3,0 2,0 230 2.74 2,80
12 -1,0 -1,0 1,37 1,66 1,67 28 2,0 30 2,26 2,71 2,73
13 -0,5 -2,0 0,81 1,02 1,04 29 0 1,0 2,76 3,15 3,19
14 -1,0 10 1,38 1,67 1,67 30 1,0 0 5,81 3,79 3,82
15 0 2.5 0,80 0,99 1,03 31 4.5 -4,0 0,18 0,24
16 0,5 1,5 1,91 2.27 2,35

Commas indicate decimal points.
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3. A Practical Example in Evaluating the Depth of Location and Mass of
a Group of Perturbing Bodies

In one of the areas, gravitational and magnetic survey sketches were
made. After excluding the regional component, a sufficiently clear gravi-
tational maximum (Figure 7 a) was distinguished.

Figure 7. The Gravitational Force Field and Magnetic Field
in One Area of the Investigation.

In this same area three local objects (Figure 7 b) were distinguished in the
magnetic field. One can make various conjectures about which perturbing
objects caused these anomalies. It is possible that the bodies which cause
magnetic and gravitational anomalies cannot be compared to one another.
In a given region rocks can exist which create both magnetic and gravitational
anomalies. There can be any number of intermediate variations in which dense
rocks are distinguished from magnetic rocks, or there can be rocks which are
characterized by excess density and by higher values of magnetic properties.

The researcher who is thoroughly familiar with the geological structure /41
of the region in which he is operating and with the physical properties of
the rocks can choose one hypothesis or another.

The following problem was posed to us. On the basis of the geological
premises in a given region, it is possible to propose the existence of four
perturbing objects with excess masses. It is necessary to find four centers
of mass and to determine the excess mass of each body.

In order to solve this question we approximate the perturbing masses in
the very first approximation by using four spheres. We will fix 22 points
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(n = 22), choosing them in such a way that they describe the field being in-
terpreted as completely as possible. Table 11 shows a listing of these points
where the coordinates and values are given for the gravitational force anomaly.
We calculate Ffin according to formula (1.13). We set 6Ag = 0.2 mgl, and

then Ffin = 1.76 mgl

TABLE 11.

Cdtes Value of A Coor- Value of A7 In the AfterOb- the AfterfOb-x y Initial sou- serv- Initial solu- serv-
Approx tron ed Aroxtion ed

1 0,3 0 16.4 4.4 4,2 1 175 0,75 30 1,9 2,2
2 0.70 0,5 13.0 4.6 4,2 12 1,75 0 2.7 2.3 2,3
4 10 0.40 14,0 4.3 4.0 14 050 -0.50 3,8 2,7 3,0
5 0,86 , 12,0 5,2 5,3 15 0 0 6,0 2,1 2,0
6 1,25 0.125 65 4,8 5,0 16 0,75 0.15 10,4 5.4 5.5
7 1,125 0.55 7,1 4.4 4,5 17 -0,35 0.50 1.0 0.7 0,5
8 0,5 0,3 9,3 4,4 4,7 18 0,60 1.25 1,4 1,0 1,0
9 0,25 0.75 2,8 1, 1.7 19 2.36 0,25 0,7 0,7 0.5

10 1,25 1,00 2.3 1.9 2.3 20 2,00 --0,35 0.8 1,0 1,0
II 0 75 -1.25 0,1 0,6 0,5
r --.J -0,75 0,7 0,6 0,4

Commas indicate decimal points.

Table 12 shows the parameters of the four spheres by which we approxi-
mated the perturbing bodies in the first approximation. The results of solv- /42
ing the problem are shown in the same table: in Table 12 are the parameters
of the selected bodies, and in Table 11 the observed and selected values of
the anomaly have been compared. As is evident, the selection was made with
sufficient precision. The maximum deviation is observed at 3 points and is
0.4 MGL.

TABLE 12.

No. of Perturbing Body
Parameter 2

Initial Approximation

• x "3 0,75 0,85 1,5
y 0 0,55 0I - ,15 0,4
h 0,3 0,35 0,25 0,3

In Units of MI10m 19 020 0,18 o.f

Solution

x 0,38: 0,79 0,93 1,44
y -0.02 0,62 -0,20 0,37
S0.44 1 .55 0,57 0.56

In Units of M.10 m 0,078 0,124 0,18 0.139

Commas indicate decimal points.
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4. Solving the Inverse Problem for Anomaly Vxz for a Group of Cylindrical

Perturbing Bodies

The solution to this problem has essentially been given in the first
chapter. Here we will simply explain what concerns the immediate problem and
we will make some remarks on methodology in selection of the initial approxi-
mation.

The function which must be minimized is written by relationship (1.23).
Formulas (1.24) are used to write the recurrent relationship to determine the
desired parameters {t., hj., d.}, j = 1, 2 ... , m, where m is the number of

cylindrical bodies.

Now let us examine the question of selecting component values for the

first approximation: {t ) 
, h(o) , d(o), sign j} (all information about the

geological structure must be taken into account here, or hypotheses about the
distribution of the perturbing masses must be introduced). The parametric
values of the cylindrical masses for the first approximation can be computed.

At the very start it is convenient to determine components d.° ) . d(o)
can be accepted as equal to the values of the abscissas of the point where
Vxz = 0, or the points relative to which the function is symmetrical in a
narrow region. Each local anomaly can be examined individually. By fixing /43
the beginning of the coordinates at points x. d(o) each time, we computed

i j
the initial approximations of depth according to the relationship h. = x e

(xe is the abscissa of the extreme point). The initial values of the para-

meters can be computed according to the known relationships for the mass of
a cylinder

D ..... _ Ih MolS4 't (Vx) max,

or

i=0 6O11hj (Vxz)max.

If the magnitudes h are expressed in meters, and if Vxz is expressed in

Eoetvoes then X. will have the dimensionality m/m. Now it is easy to cal-

culate the parameter t(o) -= ip

In conclusion, let us examine a practical example. In one of the ultra-
basic massifs, an anomaly was obtained for the horizontal gradient of the
force of gravity (Figure 8). By their nature the perturbing masses can be
identified with two-dimensional bodies. A detailed examination makes it
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possible to distinguish five perturbing masses. One body has a very deep
location, and its anomaly has determined the general nature of the field.
The four other bodies are small masses, and their location is not deep. They
cause anomalies in the background of the basic field. We will identify each
perturbing body as a cylinder. Since the position and dimensions of the
cylinder are characterized by three parameters, 15 magnitudes form the basis
of the determination. By taking into account the nature of the fields, we
will fix 17 points equidistant from one another. Table 13 shows the numerical
values of the abscissas of the points and the anomalies which correspond to
them.

I\ Eoetvoes

Figure 8. Anomaly Vxz in One Area of the Investigation.

TABLE 13.

the point x, m xz eected Uxz obse o nth x m Selected Uxz obse

1 0 a 36 26 10 360 5 9
2 40 41 40 11 400 6 0
3 80 44 42 12 440 -25 -26
4 120 43 39 13 480 -29 -33
5 160 33 22 14 520 35 -4
6 200 15 13 15 560 [--st51 -54
7 241 -2 0 16 600 -43 -51
8 ,1 -9 -13 17 640M O -5 -65
9 320 -6 -19

On the basis of the observed field, we calculate the initial approxi-
mations of the unknown parameters. These are shown in Table 14. We will
determine Ffin according to formula (1.13). We will accept 6V = 5 Eoetvoes,xz

2
and then F = 850 Eoetvoes . Tables 13 and 14 show the results of the

fin 2
solution. The initial value of the minimized function F is 4399 Eoetvoes , /44
and the final value of F . is 622 Eoetvoes2 . This corresponds to an average
deviation of the observe and selected fields of within 4.2 Eoetvoes. As is
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evident, the selection has been made with sufficient precision. In Table 13
the observed and selected anomalies have been compared. The maximum devia-
tion between them is 13 Eoetvoes.

TABLE 14.

Parameter No. of the Perturbing Body

1 1 23 4 i 5

Initial Approximation

15 0 4 0 2 5 5 10S10
h 500 40 80 85 .315

S240 530 620

Solution

t 41 47 23 23 1 9.
h ' 505 162 75 85 12.2
t 317 196 425 526 633

62.8103 6.9. 103 1.7 10' 1.7.10' 0,05. 10s

Commas indicate decimal points.
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CHAPTER III

DETERMINING THE CONTOURS OF TWO-DIMENSIONAL GEOLOGICAL
BODIES ON THE BASIS OF GRAVITATIONAL ANOMALIES

In this chapter an examination is made of the questions of solving inverse /45
problems of gravitational force and horizontal gradient anomalies. The unknown
controu of the perturbing body is approximated by segmented straight lines with
right angles.

The methods of solving the problem are illustrated by theoretical and
practical examples.

I. Solving the Inverse Problem For Two-Dimensional Perturbing Bodies Bounded
by Segmented Straight-Line Contours

On the basis of the observed gravitational anomaly, it is necessary to
determine the contours within which the excess masses are located. We approxi-
mate the unknown controu by using a segmented straight line. In this case it
is possible to consider the gravitational anomaly as the sum of the effects
from oblique or straight steps. We will accept that within each step the excess
density is a constant and known value. By changing the individual density from
step to step, it is possible to describe the configuration of a geological body
with a variable density.

In order to simplify the solution somewhat, we will give the segmented
straight-line contours right angles. If there are m steps, then the anomaly
can be approximated in the following manner:

For the gravitational force anomaly

Ag (x) =k i (Hi -h) + 2H arctgx-di (3.1)

- 2hl arctg h + + (x - d,)2

and for the horizontal gradient anomaly of the force of gravity

VX, = k ai In i (x \ ! -  (3.la)

Each projection is characterized by four parameters: h. and H. which are /46

the depths to the upper and lower boundaries of the projections, d. which is
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the abscissa which determines the location of the vertical boundary relative to
the beginning of the coordinates, and ao which is the excess density of the

masses. The value of these parameters was shown in Figure 1. In this case a
two-dimensional problem is being examined where 11 - - - and 12 + 00

We will fix in the observed field n points with abscissa x.. We include

those points which are most descriptive of the gravitational anomaly. We will
construct a function like (1.2) which will now be expressed in the following
manner:

For the gravitational force anomaly

F I= . [Aobse(x) - Agtheo(xt) 2, (3.2)
i= 1 -

For the anomaly of the horizontal gradient of the force of gravity

F = [Vxzobse(x) - Vx theo(X (3)] (3.2a)

The values of Agtheo (x) and Vxz theo (x) are determined according to formula
(3.1) and (3.1a).

Thus the function F will contain four m parameters: ao, h, Hj, and d.
(j = 1, 2, ... , m). We will assign the values of parameters h., H. and a..

d. remains the variable parameter. Of all the possible values for these para-

meters, we will choose those which may change function (3.2) into a minimum.

We will carry out the calculations according to the formulas

d '" = d? - Xk (F'd,)k

where k is the number of the approximation (iteration). In these expressions
F'dj acquires the values:

For the gravitational force anomaly

:Fd= 2kui \ In - '(3.3)

6 i Agobsel 1 ) - theo(x:)

And for the anomaly of the horizontal gradient of gravitational force

F (xi - di) (-h 33a)
Fi i i +(X -dI)2ih +( - d(3.3a)

L xzobse(xi) - Vx theo(xL)
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In these formulas k is the gravitational constant. It is most convenient
to express linear units in kilometers. In order to express the gravitational
force anomaly in milligals, it is necessary to accept the coefficient k as
equal to 6.67 in formulas (3.1) and (3.3). When calculating the anomaly of the
horizontal gradient of gravitational force, it is necessary in the formulas /47
(3.1a) and (3.3a) to accept k = 66.7, whatever the dimensionality of the linear
values. In this case the anomaly is expressed in eoetvoes.

2. Method of Selecting the Contours of a Perturbing Body

We will assume that a gravitational anomaly is given and that it is
established that the perturbing body is two-dimensional. Let us examine how
the interpretation is done by the selection method, using the measuring gridsof Barton. All half-space z > 0 is divided up by straight lines z = h. into a

number of elementary strips. In each of these strips, right-angle areas are
distinguished by straight lines x = dt (t = 1, 2, ...). It is assumed that the
perturbing masses are concentrated within these areas.

The problem consists of finding a series of numbers dl, d2 3 ..., dn in all
the strips such that the anomaly calculated from the selected body coincides
sufficiently well with the observed anomaly.

Let us assume that we know some value z = ho, beginning from which the
areas with excess density can be found in half-space z > 0. We will fix a
certain sequence {h.j with a finite number of digits.

The magnitudes h. can be determined according to the following relationship:

h, - hi + 6 hj hi-_2), (3.4)

as has been accepted in the Barton measuring grid. In this case it is necessary
to assign (in addition to h0 ) the values h1 and 6. The relationship (3.4)
determines the thickness of the strip of some geometric progression with the
denominator 6. In general it is not necessary to compute the sequence {h.}, but
rather it can be assigned either completely arbitrarily or by using the geological
model.

Thus the finite sequence {h is given which forms m strips. In each j strip,
the group of numbers {dlj, d 2j, ... , dfj }j are determined. The number of digits
of each group can vary. These numbers describe the location of right-angle
regions with excess masses. At an arbitrary point on axis Ox these masses create
an anomaly which is determined by the equality (3.1) or 3.la). Now it remains
to fix n points and to establish function (3.2) or (3.2a).

The magnitude F is a function of the parameters: F = F (dl, d2 , ... , d p).
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We will illustrate the solution of the problem by the following example.
Let a gravitational force (anomaly (Figure 9) be given. We will further assume
that the possibility of classifying the perturbing bodies as two-dimensional
has been established. We will choose the system of coordinates in the following
way. We will direct the axis Ox along the observation profile. We will fix
the beginning of the coordinates at some point in the profile. We will direct
the axis Oz vertically downward.

AS selected --- .

41 initial , .
approximation /

qoobserved

I mgl1

U16 10

2 2564 . 2,56

2 2,4 - - ----

Figure 9. Example of the Selection of a Geological
Cross-Section (Two-Dimensional Case) For a Gravi-
tational Force Anomaly.

On the basis of general information about the geological structure of the
region and taking into account the anomalous field, a geological cross-section,
i.e., the first approximation, has been constructed. The surface layer is a
homogeneous rock mass throughout its thickness. The thickness of the rock /48
begins to vary at a depth of 10 meters. We will make a column graph like a
Barton measuring grid, while taking into account the constructed geological
model. The first line z = h 0 = 0.01 kilometers identifies the boundary between
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the surface layer and the bedrock. Up to a depth of 1 kilometer, four more
horizontal strips have been made, each of which is 250 meters thick. The
thicknesses of the following 5th, 6th, and 7th strips have been accepted as
equal to 500, 750, and 1250 meters, respectively. This makes it possible to
describe in considerable detail the configurations of the geological bodies by
using segmented straight-line contours with vertical boundaries. In this problem
23 projections have been distinguished. Their location is described by the
selection of four-dimensional vectors {o., h., H., d.}. The values of these

parameters are shown in Table 15.

TABLE 15.

Parameters of the No. of the body
perturbing body I 2 3 4 5 . 8

a +0,04 +0,04 +0,04 -0,04 -0,04 -0,04 -0.04
h 0,01 0,25 0,5 f 0,75 0.01 0,25 0,5 0,75

H 0,25 0,5 0,75 1,0' 0,25 0,5 0,75 1,0
d 0,75 0,75 0.75 0,75 1,75 1,75 1,75 1,75

Parameters of the No. of the body
perturbing body '9 1 o 13 1 i4 1is

o +0,05 +0,10,b,05 +0,05! 0,05 +0;05 +0,05 1+0,04
h 0,01 0,2 5 0,75 1,0 1,5 2,25 0,01
H 0,25 05 0,75 1,0 1,5 2,25 3,5 0,25
d 4,0 4,0 4,0j 4,0 40 4,0 4,0 6,5

Parameters of the No. of the body
perturbing body 17 18 1 9 20 21 22 23

1 +0,04 +0,04 +0,04 -0,04 -0,04 -0,04 1-0,04
h : 0,25 0,5 '-0,75 0.01 0,25 0,5 0,75

H 0,5 0.75 1,0 0,25 0,5 0,75 1,0
d 65 65 65 85 8 5 8,5 8,5 8,5

Commas indicate decimal points.

Let us now turn to the anomalous field of gravitational force. On curve /49
Ag we will distinguish the points by which it would be possible to fully esta-
blish an anomaly, according to which the geological cross-section will be
selected. A list of these points is shown in Table 16. Tables 15 and 16
present the initial data for solving the problem. We will also establish the
value F of which it is possible to conclude the computation. We will make use
of formula (1.13). We will assume that the selection error should be 0.25 MGL,

2
and then F = 2.43 MGLfin

Figure 9 shows the results of the solution in graphic form. As was said /50
earlier, the solution of the direct problem can serve as the criterion for the
correctness of the model of the first approximation. The gravitational effect
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from the geological model hypothesis is obtained as an intermediate step in the
computation. This effect is constantly cited when solving any problem. These
results can be of considerable help in analyzing the final solution.

TABLE 16.

Coordination of No. of-the point
the anomaly J 1 2 4 6 7

X1,0 1,5 1 175 2,0 2,25 3,0 4,0
A0iobse j 0,8 130 1,69 1,64 1.45 1,30 1,43

Coordination of o ,12I 1 1 15 ... i
the anomaly

g obse 2,46 3,37 4,43 5,37 6,05 6,78 6,92 6,66 6.4 6,56

Commas indicate decimal points.

Now let us turn to solving the problem concerning the anomaly V . Figure

10 shows a graph of an anomalous field. In the observed field V between thexz
1.5 kilometer and 3.0 kilometer peaks, a geological object is distinguished, /51
the rocks of which possess greater density than the enclosing medium. The
nature of the anomalous curve in the area of the 2.0 - 2.5 kilometer peaks is
evidence of the heterogeneity of this object. In addition, in the right part
of the profile, contact between rocks of various densities is clearly distin-
guished. The location of the contact is approximately described by the maximum
of the anomaly V xz

Taking into account data on the geological structure of the region and the
physical properties of the rocks, and subjecting the observed anomaly to
stringent analysis, we create a schematic hypothesis of the distribution of the
geological object. Following this schematic, we assume that the upper covering
over the entire area is homogeneous to a depth of 250 meters. The lower boundary
of the rocks, the density of which is 3.4 g/cm 3, is located at a depth of 1.5
kilometers. Within this rock mass, rocks are distinguished with a density of

3
2.9 g/cm . Their lower limit reaches 850 meters.

Beginning from the peak at 4.75 kilometers, a second rock massif is dis-

tinguished with a density of 2.9 g/cm 3 . On the basis of the nature of the field,
it is possible to propose that it is relatively homogeneous. The lower boundary
of the contact, on the basis of geological data, has been accepted as equal to
3.0 kilometers. The enclosing rocks over the entire expanse are homogeneous,

and we accept their density as equal to 2.6 g/cm 3 . However, between the two
massifs described, the enclosing rocks have undergone changes, and their density

should be accepted as equal to 2.5 g/cm 3 . Having made all the constructions,
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we divide the lower half-space (z > 0) into several strips as is done in the
Barton measuring grid. The first line should be drawn at a depth of 0.25
kilometers. It will divide the upper covering from the heterogeneous rock mass
located below. Further, four horizontal strips are distinguished by the line
z = 0.5, z = 0.85, z = 1.5, and z = 3.0 kilometers. Now it is easy to code
the geological schematic since we have already written up the location and
dimensions of the 14 contacts (Table 17).

TABLE 17.

No of the perturbing body

o 0,8 0,8 0,8 --04),9 -0,9 --, - ,5 -0,5. +0,5 +0,5 0,4 0,4 0,4 0,4
h 0,250,5 0,85 0,25 0 5 0,85 0,25 0,5 0,25 0,5 0,25 0,5 0,85 1,5
H 0,5 0 ,5 ,5 1 0,5 0,8 1,5 0,5 0,85 0,5 0,85 0,5 0,85 1,5 3,0
d 1,5 1,5 1,5 3.0 3,0 3,0 2,1 2,1 2,6 2,6 4,75 4,75 475 4,75

Commas indicate decimal points.

In curve VxZ we will fix the most descriptive points. As in the previous

example, they are not selected uniformly. Wherever the anomaly is monotonic
and has a uniform gradient, the points are selected more rarely. The points
were selected more thickly at the most salient points of the curve. In all, 20
points were fixed. A list of those is shown in Table 18. In order to calculate
Ffin, we will consider that the selection error should not exceed 5 eoetvoes.

In this case Ffin = 1000 eoetvoes2

TABLE 18.

No of the I
points 1 2 1 4 5

x 0 0,75 1,0 1,25 15 1,75 2,0 2,25 2,5 2,75
Vx 17 38 54 82 21 107 40 3 -5 -24

No. of the I I
points 12 13 4 15 IS 18 19

x 3,0 3,25 3,5 4,0 4,75 5,0 . , 0 8,0
Vx -80 -86 -35 33 103 101 75 36 I8

Commas indicate decimal points.

The results of solving the problem are shown in Figure 10. Here the anomaly /52
V is cited which has been stipulated by the geological model hypothesis (first

approximation).
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VAz first approximation

I :vz observed

/ ' ' selected/ , 20 eoetvoes s

I#

* 2 4 6 5
.o

226

24 2,9

Figure 10. An Example of the Selection
of a Geological Cross-Section (The Two-
Dimensional Case) According to an Anomaly
in the Horizontal Gradient of Gravi-
tational Force.

We will illustrate the solution of the problem by one more selection of a
fairly complex geological object. Figure Ila shows the density cross-section
which has been constructed on the basis of available hypotheses about the
geological structure of the region.

We will fix the start of the coordinates on the line of observation. We
will direct the axis Ox along the line of observations, and we will direct the
axis Oz vertically downward. The area where the perturbing masses are concen-
trated is divided into 11 horizontal strips by the straight-line z = h.. In

each strip the limits of the perturbing masses are indicated by the straight-
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lines x = d.. The density values of the rocks are written inside. The

boundaries of the masses are enumerated (in the figure this numeration has been
omitted). In the first and second strips, the boundaries are grouped together
by nines (No. 1 - 9 and No. 10 - 18), in the third strip they are grouped
together by 13 borders, etc. In all, 77 contact boundaries have been fixed.
66 points have been fixed for selection. One notes at once the rather large
difference between the observed anomaly and the results of solving the direct
problem from the initial model (especially in the area of 50 - 55 kilometers).
This is evidence of the fact that rather significant errors were allowed during
the construction of the initial variation of the geological model.

Figure llb shows the selected cross-section. The theoretical and observed
anomalies coincided quite well. Their lack of agreement in small areas can be
explained by heterogeneities in the upper portion of the cross-section which
were not taken into account. This example is a good illustration of the change
in the geological model of the first approximation and its transformation into
another model. Completely satisfactory agreement was attained between the
observed and theoretically calculated anomalies by this process.

/53
- first approximation /53

t selection/
\ \ 90gobserve d  .

...... .- 36 4 2 45 \Y

24 5 fo ly 20 25- 35 40 45 5O "
Z .9 W . ......... , , 'Il ... 1 11i1 T i *

Figure 11. An Example of the Selection of a Geological
Cross-Section According to the Gravitational Force
Anomaly: a) Initial Approximation, b) Solution.

51



3. Determining the Contours of a Perturbing Body With Partially Known /54
Parameters

Additional requirements for searching for the contours of perturbing bodies
often arise when solving practical problems.

Some parts of the cross-section are determined quite exactly on the basis
of geological data or the data of other geophysical methods. These parts of
the cross-section should not be changed during the process of selecting the
contours. This means that among m steps by which the geological model is
described, there are those in which the parameter gj does not change during the
computation process. We will divide all of the parameters of the geological
model (steps) into two groups. We will include in the first of these groups
the projections belong to this group. The second group will comprise the
remaining projections, all the parameters of which are constant. Now formulas
(3.1) and (3.1a), by which the observed anomalies are approximated, should bepresented in this form:

I n1
Ag (x) = k f(a 1,h, H. di, x) + k f (a,, hi, H1, dl, x), (3.6)

V(x) k (a, hl, Hi, di,x) + k h, Hidx). (3.6a)

Functions f and p are determined by relationships (3.1) and (3.1a). In equality
(3.6) and (3.6a), the second part is only the function of the coordinates.

We will now turn to (3.2). The function can be written as

Si i-1 /,m,-
. gobsefx,) -- k m,+-k d

i Aobse(x,)-k Y fJ -k f]

or /55

F Agobse(xi)- Agtheo'x,)12  
(3.7)

where now Agtheo (x) is determined by equality (3.1) and is a function of only
those projections in which the parameter d. is a variable quantity. The function

Aobse (x) is determined by the relationship

Agobse(x) Agobse(x) -k f (oai, hi, Hi, di , x) (3.8)

and, is essentially a residual anomaly. The gravitational effect of the geo- /56logical projections, the parameters of which are known and cannot change, are
excluded from the observed anomaly.
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Small additions to the previously described program make it possible to
fully automate the calculation. The parameters of the geological model should
be fed in by using two massifs. One includes the vectors among the components
of which there are variable parameters, and the other includes the vectors in
which the components are constant.

The second massif of initial data makes it possible to compute the second
term of equality (3.8) and then function Ag* (x). In the future this functionobse
will be used as Agobse (x). Everything mentioned relates fully to function /57
(3.2a) where the anomaly in the horizontal gradient is examined. We will
illustrate this presentation with an example. Let there be in the geological
model which was examined in section 2 (Figure 10) a well-known position for the
line along which rocks with a density of 2.9 make contact with their enclosing
medium. Thus, during the selection there is no basis for changing the position
of the line. We will fix the parameters which describe this contact, and wewill solve the problem by selecting the contours again. In this case, Table 17
should be replaced by Table 19. Here the projections, the position of which
should be changed, are clearly indicated. The parameters which describe the
location of the contact line are written up in a separate group. These quan-
tities should not be changed during the selection process.

TABLE 19.

Q) No. of perturbing body

312 13 I 14

Variable Fixed

S0,8 +0,8 +0,8 0,9 -0,9 -05+050. +0,+0,0 0,4h 0.25 0,5 0,85 0,25 0,5 0,8 65 0,0.5 0,25 0,5 0.25 0,5 0.85 1,5

d 1.0 10 1,.0 3,25 3,25 3,25 1.5 15 275 2,75 4.4 4 4,6 4,5

Commas indicate decimal points.

In order to solve the problem, 20 points have been chosen on the anomalous
curve, as was done in the previous problem. This means that the data of
Table 18 are included in the initial data, in addition to the data of Table 19.
The results of the solution are shown in Figure 12. Figure 13 shows the solution
of this same problem for the gravitational force anomaly. The position of the
contact on the right in the geological cross-section has been confirmed. In
the model of the first approximation, a group of rocks, the contours of which
are to be found, has been given in a more tentative manner than in the previous
problems.
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Figure 12. An Example of Selecting a

Geological Cross-Section on the Basis of

an Anomaly of the Horizontal Gradient of

Gravitational Force.
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Figure 13. An Example of the Selection
of a Geological Cross-Section For a
Gravitational Force Anomaly.
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CHAPTER IV /58

DETERMINING THE CONTOURS OF THREE-DIMENSIONAL PERTURBING
MASSES BY USING GRAVITATIONAL ANOMALIES

1. Formulas for the Computation

For an observed gravitational field, it is necessary to determine the
spatial distribution of a perturbing object which is finite in space.

Everything which has been stated earlier about determining the contours of
a two-dimensional body can be generalized to the three-dimensional case. We
will look for the form of the perturbing bodies as a selection of straight
steps which are finite in space. Each of these steps is described by 6 para-
meters (a, h, H, I1, 12, d) The values of these parameters have been shown in
Figure 1.

We will consider that the excess density is a constant quantity within each
of these steps. By changing the density value from step to step in each case,
it is possible to describe the configuration of a sufficiently complex geological
body of variable density.

The gravitational effect of the masses included in such a step can be
obtained by solution of the direct problem for a parallelepiped. It is sufficient
to presume that parameter x2  -

If there are m steps, then the observed anomaly can be approximated in the
following way:

For the gravitational force anomaly

(J 2- y )  
1, A21(- y) + A9'JAg (x,) = - k (d - x) n - + + 1 (4.1)k [(1,J 1 ) + A I [(lI -- y) + -Ai

+ ((-- x) + -A + - x) A

+ H arctg H - arctg -i
12 - y (d - x) (1,-)

HI HiAl2-arctg H + arctg d-iI- (di- x)(lI-Y)

l _lA_ /59

- arctg l + arctg( hAj 1
-" -y (d, -x) (lIY - y)
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For the anomaly of the horizontal gradient:

.- (4.2)

VA 2

In the observed field we will fix n points with coordinates x. and y.

We will structure the same function as (1.2). In order to determine the
parameter d., we will write the values of the derivatives:

For the anomaly of the force of gravity

2ka, Yobse'xi y) - Agtheo(x, Y) X
22 11

[(12j - i) + j ][(1j Yi) + A

(di - xt (dl - xt)2

[(1jl - y) + A A (1i - y) + A21 A 2

(d - xI) (di - X& T
Ylji(U) + A A 1(12 - yi) + Ai' A'J

+ (s -1 - J-(I ( Yd{ +1 (4.3)

.. (l, - y ) I(1,t - y) 2 + H]

(i - x,( M2 i- y,)- + (A)2) A ,

f2 21 2- (dih 2 ( I,/ - yi) hi - (A )2 Ah 1

h (i - Yi) [(i - Yt 2 + hJ 1

{(d - xl)' (1, - yJ,+ hi (A)')'} A Ij5
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For the anomaly of the horizontal gradient

Fd 2ku [Vxzobse(X,) VXztheo ×X X

X (X - di) 12 2 (4.4)

1 1

(1;/ + ) A ) (ls , A 2 )

2. Selection Methods

The methods of selecting three-dimensional bodies do not differ basically
from those described for two-dimensional bodies. The first variation of the
problem provides for a search for the contours of the perturbing body in the
coordinate plane x0z while taking into account its dimensions in space. If
some of the objects are not intersected by the coordinate plane, then a pro-
jection of the contours is sought.

We will use examples to illustrate all our methodological means.

The Gravitational Force Anomaly

Let a gravitational force anomaly (Figure 14) be given. As is evident,
the perturbing object is nearly isometric, making it impossible to use the two-
dimensional problem. We will fix the beginning of the coordinates in the center
of the anomaly. We select the axis Ox across the course being noted. Then it
is natural that the axis Oy should be directed along the course, and the axis
Oz should be directed vertically downward. Figures 15 and 16 show the curve of
the gravitational force anomaly. We will draw columns like the Barton measuringgrids in planes xOz and yOz. Let it be established that the initial depth can
be accepted as equal to h0 = 0.25 kilometers, and the final depth is H = 4.0 /61
kilometers. We will divide this whole region into 6 strips by using the planes
h. = 0.25; 0.5; 0.875; 1, 375; 2.0; 2.75; 4.0 kilometers. We will solve the
problem sequentially. At first we will make approximation in the plane x0z,
then in yOz, etc.

For the zero approximation we will select the bar (parallelepiped) which /62
is bounded by the planes xl = -1.75 kilometers, x2 = 2.0 kilometers, yl 3.0
kilometers, and y2 = +3.0 kilometers.

In the given case, in planes x0z and yOz the number of unknown parameters
(dj) will be the same (12 unknowns in each case).

Let us examine curve Ag (x). We will fix the most descriptive points on
this curve. The coordinates and values of the anomaly are given in a table
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(Table 20). Table 21 shows the geological model. Of every six parameters, the
first five are constant, and the sixth d is variable. Tables 20 and 21 show
the results of the solution. The calculated field agrees fully satisfactorily
with the observed.

Now we will move to selecting the
contour along axis Oy (Figure 16). The
parameters which describe the space
have been taken from the previous solu-
tion (along axis Ox). Tables 22 and
23 show the coordinates of the points,
the values of the anomaly, and the

Sparameters of the geological model.
The results of the solution are also
shown. The first cycle of calculations
is concluded with these calculations.

Analyzing the results of the cal-
x culations, one can state that the com-

putation was done with considerable
Figure 14. The Field of Gravi- exactness. The selected and observed
tational Force. anomalies agree completely satisfactorily

with one another. However, the contours
in plane x0z have been selected with

extremely approximate values for the dimensions of the masses which are anomalous
in space. As one can see from Table 21, the uppermost block was computed under
the condition that its space ranges from -3.0 to +3.0 kilometers. The values
of these parameters have been computed according to the profile along axis Oy
and are -1.83 and +1.13 kilometers. In order to clarify how this is reflected /64
in the results of the solution of the problem, it is necessary to repeat the
computation, making a unique second cycle. Thus, in Table 21 parameters 11 and

12 have been taken from the results of the computations of the first cycle along

axis Oy (Table 23).

The values of the parameters computed in the second cycle Ox are shown in
Table 21.

Now the parameters in plane yOz can also be defined more exactly. After
changing parameters 11 and 12, we will carry out a second cycle of computation

along axis Oy. The results of these computations are shown in Table 23. When
analyzing these data, it has been established that now the discrepancies in the
desired parameters are small (they are less than 200 meters).

A third cycle was also carried out. Its results differ little from the
second and are not shown in tables.

The results of the calculations are shown in Figures 15 and 16.
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Figure 15. Selection of the Profile
Along Axis Ox.
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Figure 16. Selection of the Profile
Along Axis Oyx.
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TABLE 22.

Coordinates Value of a_

In theinitial Selected in Selected in the
Y Observed approxima- the first 2nd cycle

tion (1 cycle cycle

- o8 0 0,82 06 00,78
-6,0 0 1,85 40 1,73 1,76
-4,5 0 3,61 306 3,46 3,53
-3,0 0 i,92 8,75 6,88 6,96
-2,0 0 10,52 1;,26 10,49 10,45
-1,5 0 12,90 14,27 12,72 12,88
-1,0 0 14,27 17 14,26 14,33
-0,5 0 14,79 15,20 15,10 14,89

0 0 14.94 15,30 15,35 15.04
0.5 0 14,79 15,20 15,14 14,87
1,0 0 14j7 14,87 14,15 14,19
2,0 0 10,52 13,26 10,38 10,47
3.0 0 6,92 8,75 7,00 7 .
4,0 0 4.50 4.16 4,37 4.43
5,5 0 2.30 1,79 2,12 2,15
8,0 0 0,82 0,62 0,74 0,75

Commas indicate decimal points.

TABLE 23.

Parameters of
the geological I 2 3 4 5 6
scheme

o 0,25 -0,25 0.25 -0,25 0,25 -0,25
h 0,25 0,25 0,5 0,5 0,875 0,875
H 0,5 0,5 0,875 0,875 1,375 1,375a -0,93 -0,93 -1,05 , 05 5 -1,32 -1,32
l! 0,65 0,65 0,44, 0,44 0,68 0,68

dassig -3,0 3,0 :3,00 3,0 -3,0 3,0

dcalcul

I cycle -4,83 1,13 -1,79 1,66 -2,37 .2,48
II cycle -1,69 1,32 -1,64 1,81 -2,45 2,53

Parameters of
the geological 7 9 11 1scheme

0,25- -0,25 0,25 -0,25 0,25 -0,25
h 1,375 1,375 2,0 2,0 2,75. 2,75H 2,0 2.0 2,75 2,75 4,0 4,0
11 -1,54 -1,54 -1,7 -1,7 -1,87 -1,87
12 1,70 1,70 2,28 2,28 2,65 2,65

dassig -3,0 3,0 -3,0 3,0 -3,0 3,0

dealcul
I cycle -2,83 2,99 1 -3,44 3,42 -3,82 3,64
II cycle -2,91 3,06 -3,52 3,50 -3,93 3,76

Commas indicate decimal points.
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An Anomaly in the Horizontal Gradient of Gravitational Force /65

Figure 17 shows anomalies of the horizontal gradient of the force of gravity
for the same geological object. The selection method remains the same as before.

In Tables 24 - 27 data are cited for the computation of the inverse problems
for anomalies V and V . The parallelpiped, the boundaries of which convergexz yz
with the extreme points has been accepted as the initial approximation. At
the very beginning, using the approximated data about the dimensions of the

Sbody, along axis Oy, we determine its contour in the section x0z (Table 24 and
25). Then we move to the anomaly along axis Oy. The overall dimensions of the
body have already been defined more exactly by the previous computation, and
the results are shown in Tables 25 and 27. The first cycle of computation is
concluded at this point.

TABLE 24.

Value of the anomaly v , Value of the anomaly v-

3 - O 0 . - 0 C -

4) C2 1 9) 03 134

1 -4,0 45 =9 33 40 9 0,5 -160 -114 -149 --2 -3,0 79 38 67. 75 10 1,0 -176 -242 -164 -1723 -2.5 107 57 96 104 1 1.5 -160 -153 -152 -1584 -2,0 1461 90 1 87 143 12 20 --134 -90 1-13b1-134

5 -1.5* 202 153 189 195 13 2.5 -109 -57 -106 -111
6 -1.0 255 242 237 250 14 3,0 -88 -38 -77 -87
7 -0,5 124 114 96 112 15 4,0 --55 -18 -39 -49
8 u -22 0 -11 -14 16 5,0 -34 -10 -20 -27

Commas indicate decimal points.

TABLE 25.

Parameters of I
the Geological 1de 2 3 4 5 6 7 10 1 2

1 -1 1 -1 1 -1 1 -1 1 -1 1 -1
t 0,25 0,25 0,5 0,5 0,815 0 ,875 1,375 1,375 2,0 2,0 2 2,7-
i 0.5 0,5 0,875 0,875 1,375 1,375 2,0 2,0 2,75 2.75 4, 4,0
1 -1,75 -1,75 -1,75 -1,75 -1,75 -1,75 -1,75 -1.75 -1,75 -1,75 -1 1,

.. 1,75 1,75 1,75 1,75 1,75 1,75 1,75 1,75 1,- 5 ,75 , 1,
dassig -10 1,0 -1,01.0 1.0 -1,0 10 -1.0 10 -1, 1 1

dcalcul
I cycle -1,0 0,54 -1,10 0,98 -1,51 1,77 -1,69 1,96 -1,68 1,90
I cycle -0,93 0,47 -1,08 0,96 -1,37 1,36 -1,63 2.13 -1,73 2,13 2

Commas indicate decimal points.
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The second cycle again begins by selecting the contours in plane xOz. By
using the results of the computations along axis Oy, we define more precisely
the body in space. The results of the computations in the second cycle are
shown in the same tables.

TABLE 26. /66of --- th yr.- - . ; , -- ~*-- . .......
0 Value of the anomaly v Value of the anomaly v z

1 - , 51 19 26 48 12 - 0 0 0 -2 0
2 -4, 78 37 77 86 13 0,5 -25 -47 -39 -27
3 -_45 80 112 118 14 1,0 -67 -109 -86 -70
4 -25 '140 27 139 148 15 1,25 -104 -153 -117 -111

5 -, 79 219 177 177 16 1,5 -173 -213 -151 -174
6 -17 2,00 260 176 207 17 1,75 -200 -260 -178 -204
7 -1,5 178 21 150 172 18 2,0 -179 -219 -179 -172
8 -1,25 104 153 114 109 19 2,5 -140 -127 -140 -144
9 -1,0 67 109 83 69 20 3,0 -115 -80 -116 -119

10 -0,75 40 75 57 44 21 5,0 -52 -19 -25 -4811 -05 25 47 35 26

Commas indicate decimal points.

TABLE 27.

Parameters of 0t e ological 2 1 5 6 7 1 2 .Model 4 1
a 1 - 0 15 - 6- 1 -1 1 11--I -

0,25 0,25 05 05 0,875 0,875 1,375 1,375 2,0 2,0 2,75 2,75
0,5 0,5 0,875 0,875 1,375 1,375 2,0 2,0 2,75 5 4,0 4,0

2 ,0 2,75 47 4
4 - 1, 1 -1,5 -1,5 -1,7 -1,7 -1,68 -1,68 -1,67 -1,67S 054 10 1,0 1,77 1,77 1,96 196 1,90 1,90 1,92 1,92

alcl -1.75 1,75 -1,75 1,75 -1,75 1,75 -1,75 5 -75 1,-175 -1,75 1,75
calculssg

- I cycle 71,50 - 179 -2,00 2,00 -2,17 2,09 -2.08 I 97 -2,00 1,901cycle ,1,67 66 -1,74 1,72 -282 2.96 -271 2.69 -342 3:39 -3,20 3,15

Commas indicate decimal points.

The computed anomalous function coincides sufficiently well with the /68
observed function, and there is no need to repeat the iteration process.

The results of the selection are shown in Figure 17. Here two graphs arecombined, and therefore the valuds.of the anomalies in the first approximation
are now shown in the tables. The figure shows the contours of the theoretical
model for which all the computations were carried out.
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Figure 17. Selection for an Anomaly of
the Horizontal Gradient of Gravitational
Force: 1) Assigned Contour; 2) Contour
of the First Approximation; 3) Selected
Contour; 4) Selected Anomaly.
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CHAPTER V /69

INTERPRETING ANOMALIES COMPLICATED BY LOCAL BACKGROUND
CONDITIONS

1. Posing the Problem

It is very important to know the level of a normal field when interpreting
gravitational anomalies. For a variety of reasons, we very often have no
absolute general knowledge about a gravitational force anomaly. These reasons
can be inexact knowledge of the normal distribution of gravitational force and
extremely approximated knowledge of the density parameters of the rocks which
make up the intermediate layer. As a result of this the Buge correction factors
and many other things can be very inexact.

When solving a direct problem for certain geological conditions, various
investigators can obtain different readings for the field level. This can be
illustrated by a very simple example.

Let there be in the cross-section a limitless plane-parallel layer in which
contact is clearly distinguished between two types of rock which differ in
density. Examining this cross-section from the side of the less dense rock, we
obtain a general positive anomaly for the force of gravity. If the investigation
of the region is carried out from the side of the dense rocks and if the normal
field is selected at that point, then the anomalous effect of the contact willbe located in the range of negative values for the force of gravity. The first
and second anomalies differ from one another only by their constant components.
Many similar examples can be cited.

We will now turn to questions of interpretation. The machine method of
selection examined by us consists of comparing the observed field and the
results of solving the direct problem. It is evidently clear that in a number
of cases these fields can differ not only in details, but can have an absolutely
different level reading. No attention is paid to this during manual selection.
A simple parallel transfer (often completely automatic) solves the entire question.The situation is different with the machine selection method. Imaginary per-
turbing bodies will appear when the calculated body is combined with the observed
body.

We will turn again to an example. Figures 18 and 19 show the results of
selecting the contours of geological bodies for a gravitational force anomaly.
The entire process was carried out using the computer method described in
Chapter III. In the lower parts of the figures the geological model is shown /72which was constructed by the investigator as the initial variation (the first
kilometer of the cross-section has been excluded from the investigation). The
direct problem for this geological structure on the level of the field differs
by 15 mgl from the observed field.
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--. __.._.I first approximation
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20 
- O5S

Figure 18. An Example of Automatic Selection Without
Taking Into Account a Difference in the Levels of the
Observed and Calculated Field.

Figure 18 (the upper cross-section) shows the results of the selection.In order to compensate for the 15 mgl, horizontal intermediate layers with excessdensities of +0.27 and +0.17 have been inserted into the geological cross-section. These masses have been formed by the movement of heavy masses to theleft. The horizontal dimensions of the masses which had a density of +0.1 and+0.2 have been sharply increased. Although the observed and selected anomaliescoincided quite well, it is obviously difficult to evaluate positively the

A completely different picture was obtained after introducing into theobserved anomaly correction factors for the field level (Figure 19). Theobserved anomaly and the results of solving the direct problem, it is true,differ considerably, but they coincide in their asymptotic parts. Now the resultof the selection differs from the initial approximation only in a few details(although these details are very significant).
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Figure 19. An Example of Automatic Selection Taking
Into Account a Difference in the Levels of the Observed
and Calculated Field.

Thus arises the task in the observed field of distinguishing two components,
one of which can describe the geological heterogeneities, and the other the
general local background. In its mathematical formulation, the task will consist
of the following. Let an anomalous field Vobse (x, y) be assigned. (This can
be any gravitational or magnetic anomaly). We will fix in this field n points
with coordinates x. and yi. On the basis of all information about the geo-
logical structure, taking into account the field being interpreted, we construct
a geological model in such a way that the anomalous effect from it can be com-
puted. Let this effect be Vtheo (x, y). Using the function f (x, y), we
approximate the regional component of the fields as V = f (x, y). Now wereg
will compare the two groups of the function Vobse (x, y) and Vtheo (s, y) +
f (x, y). We will construct this expression:

F = Vobse (x,, )-- Vtheo (xi, y) - f (Xi, y,)12 . (5.1)
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For a certain geological cross-section and at the assigned coordinates of the
points, the variable parameters will be contained here only in the function
V = f (x, y). Expression (5.1) can be rewritten thus:
reg

F= A IA (x,, y,) f (xl, yi)l1, (5.2)

where

A (x, y)= Vobse(xi, Y,) - theo.X, Y).

If one takes into account the fact that the observed anomaly is given by
the table and that the theoretical anomaly can be computed at all fixed points, /73
then it becomes clear that it is easy to compute the function A (x, y) at all
fixed points and to write these values in tabular form.

Now we will turn to the function f (x, y). Having given a certain form
to this function, it is possible to find from the conditions of the minimum
of (5.2) the parameters which describe it. Thus in the very first approximation
it is most convenient to approximate the local component by using a linear
function with the form

f (x, y I A + Bx + Cy.

One can almost always find a geological explanation for this function. In this
case (5.2) can be written in the form

F [= (xt, t) - 4 - Bx, - Cy,] . (5.3)

Now the task is to minimize function F (A, B, C).

2. Minimization Methods

We will examine two computer models for determining the parameters which
describe a background field.

Solving the Problem Using the Fast Descent Gradient Method

It is possible to minimize function (5.3) and to determine the parameters
of the local background using the fast descent method. The computation method
does not differ from those used in the problems examined earlier in this work.
The desired values are determined by the sequential approximations

A(' +') A ' -~,FAF (5.4)

B' + " = B -- -. %F',

C'"" _ C( ) Fc.

The function F and derivatives of it depend on the geometric forms by which the
geological bodies are approximated.
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Solving the Problem Using the Linear Algebra Method

The problem described earlier can be formulated in the following form.
The anomaly computed from the geological model hypothesis Vtheo (x, y) and the

regional component of the field V (x, y) should fully correspond to thereg
observed field, i.e.

Vobse(x, y) = Vtheo(xl, ) + Vreg(X, Y).

If the regional component is approximated by the linear function A + Bx + Cy, /74
then the last relationship can be written thus:

Vobse(x, y) Viheo(X, y) + A + Bx + Cy.

For the fixed geological cross-section

A + Bx + Cy = Vobse (x, ) -- Vtheo x, y) = A(x, y).

We will fix n points with coordinates x. and y. and we will construct
the system 1

A + xsB + yC = A (xi, yi), (5.5)
i= 1,2, .... ,n.

If n > 3, then a re-defined linear system is obtained which is written in
matrix form as

Ka = A, (5.6)

where

I x 1 [ A (xj, y,)1 A]
K= lxy 2  , a- , A= A (x,,y 2) _ A2

lxnYn _ A (x, y,,)_ A,

This system can be solved using the method of the smallest squares. The method
itself relieves us of the necessity of investigating the compatability of the
given system. For each variation of the geological schematic and the system
of assigned points, we will obtain the optimum solution to the problem.

Without citing computations, we will simply indicate that vector a is
found from solving the system

I'Ka = K'A.
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Here K' is the transposed matrix K. As is known, this relationship always
leads to a fully determined system of exactly the same number of equations as
we have unknowns [45].

For our purposes the matrix for deriving P = K'K can easily be determined.
It is always symmetrical:

1 1 n x 2 Uy

p Y [xx, Y x :.. x 1 x, y2 xi yi I

Vector K'A is determined thus:

l ... 1 r ,
K'A = X X2 . .. Xn A

IY' Y YnI , yAJ

Thus this linear system of equations is to be solved: /75

nA + x ,B + I yC = (5.7)

Yx,A + YxiB + xy,C = xidA,
.y,A + 2x,y,B + i yC = YyA,.

If the observations are given in the one profile y = 0, then this system
leads to

nA + ZxB = :A,, (5.8)
Y xlA + - xiB = xf.

3. Determining the Regional Background of Local Symmetrical Gravitational
Force Anomalies

For local symmetrical anomalies where geological bodies have a branching
structure, the form of each geological object can be approximated by a sphere.
If there are in all m geological bodies, then the anomaly from the perturbing
masses can be written in the following way:

m 
(5.9)

Agtheox, y) k - Mi(5.9)i
i=l (x - X0,) + (y - ,,,)' + h

It is most convenient to express linear values in kilometers. We will decide
to consider excess mass in units of 109 T. For instance if M = 12 - 1010 T,

exc
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then it is necessary to insert into the formula M = 120 units. In this scale
the coefficient K = 6.67 and the gravitational force anomaly are expressed in
milligals.

The calculation diagram can be described in the following way:

1. Initial data. In order to solve the problem, it is necessary to assign
a diagram of the geological structure. Its parameters are entered into a
special table where the mass of each body and the coordinates of its center
of gravity are fixed.

In the anomalous field n points are selected which can completely describe
all the peculiarities of the observed field. The coordinates of these points
and the value of Ag are entered into another table. Thus the initial data for
solving the problem are reduced into two tables.

2. For the point, the coordinates of which are assigned, the function
Agtheo (x, y) is calculated according to formula (5.9). The results of the
calculations are printed out.

3. The function is computed

A, = A (xi, o) = bse(x, y,) - Agtheox, , yi).

4. The coefficients of equation system (5.7) or (5.8) are computed.

5. The system of 3(2) linear equations are solved and the regional back- /76
ground is determined.

6. The linear portion of the observed field is isolated, and the following
function is sent to printout

Agob8ex, y) = Agobse (x, y) - A - Bx - Cy.

Now it is possible to analyze the solution of the direct problem. For this
purpose, the two functions printed out are compared: Agb (x, y) and
Agtheo (x, y). obse

Then there follows a selection of parameters for the geological objects
using the method explained in the previous chapters.

If the initial approximation and the solution of the problem differ signi-
ficantly, then the determination of background parameters can be repeated.

We will illustrate the calculation method with the following example. Let
a field with an anomaly in the force of gravity (Figure 20) be assigned where
four local objects are distinguishable against a background of the general local
field. We will approximate these objects using spheres. The parameters of the
spheres are shown in Table 28.
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Figure 20. A Gravitational Force
Complicated by Local Influences.

TABLE 28. In order to determine the background, /77
we will select 31 points distributed in the
most descriptive areas of the observed fields.

SWe will list these points in Table 29.

Z After calculation has been completed,
a function is set up for the local background

1 1,07 0 1 (3 - 0.5 x - 0.5y) mgl. At all fixed points2 1,07 2 2 1
3 1,07 2 -2 1 a calculation is made of the rest of the
4 0,135 2 0 0.5 field:

ob e(x, y) = Agobse(x, y) - [3 - 0,5x - 0,5y].
Commas indicate decimal points.

Only the geological heterogenities can now
explain the observed anomaly.

4. Determining the Regional Background of a Gravitational Force Anomaly by
Block Structure

We approximate the geological objects by selecting their straight projections
which are finite in space. If m projections are given in the model, then the
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gravitational force anomaly from the geological objects is approximated by
formula (5.1). For two-dimensional purposes, formula (3.1) is used. The cal-
culation diagram does not differ from the one described above.

TABLE 29.

O0 0

1 0 0 10.73 12 -1,0 - 1 5,67 22 2,5 -1 5,13
2 1,5 0 5,93 13 -05, -- 2 5,29 23 2 0 7,50
3 2,5 0 4,57 14 1,0 1 4,67 24 -1 0 6,32
4 4,5 0 1,23 15 0 2,5 2,78 25 2.5 -2,5 7,13
5 0 -1 6,69 16 0,5 1,5 4,35 26 2 -2,5 8,66
6 1 -1 6,08 17 1,5 1 5,15 27 3 2 3,30
7 3,5 -1 2,94 18 2 2 8,57 28 2 3 3,23
8 1 -2 6,64 19 3 0,5 2,83 29 0 1 5,69
9 2 -2 10,57 20 4 4 -0,67 30 1 0 6,32

10 2 -3,5 5.12 21 2 -1 6.06 31 4,5 -4 3,00II - 3 0 4,82

Commas indicate decimal points.

The calculation method can be illustrated by the following example. Figure
21 presents the geological model of the region and the gravitational force
anomaly. Behind peak No. 20 in the rock mass, which has a density of 2.66,
there is a strip of very heavy rock. The task is to divide the observed anomalyin the area from the zero point to the peak at point 10 into two components: /78

bse) Abse(x)+ A + Bx.

In order to solve this problem, we will locate the descriptive points on
a curve. Twenty of them are delineated (in our case n = 20). A list of these
points is presented in Table 30.

TABLE 30.

z0 -

x 0,5 1,0 2 ,00 3,5 4,0 4,75 5,25 5,75
Ag 1,40 2,15 3,00 3,45 3,60 4,10 2,60 1,60 2,45 1,75

0-I

Ag 2,25 2,30 2,15 1,90 1,10 1,05 1,75 1,60 1,90 1,25

Commas indicate decimal points.
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The geological cross-section is represented by a selection of projections.
In this case 59 projections are given in the cross-section. The parameters
describing the location and dimensions of these projections are shown in Table 31.

TABLE 31. /79

Number of the body

- 1 2 3 4 7 8

4 -0,05 -0,05 +0,07 -0,07 +0.05 -0,05 -0.04 +0,04
0,05 0,05 0,05 0.05 0,05 0.05 0,05 0,05

it 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25
J 1,3 3,8 4,8 5,4 6.25 7,2 8,15 8,25

Number of the body

+0,07 -0,07 +0,07 -0,07 .F0,22 -0,19 0.05
h 005 0.05 0,05 0,05 0,05 0,05 0,25
H 0.,25 0,25 0,25 0,25 0,25 0,25 0,5
d 8,75 9,05 9,45 9,95 18,7 19,45 1,25

Number of the body
16 17 I8 19 20 21 22 23

S- 0.05 +0,07 0,07 -005 --0,05 -0 ,04 04 1-0,07
h 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25
H 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5
d 3,6 4,6 5,2 6,25 7,15 8,15 8,25 8,25 9,0

SNumber of the body

S24 25 26 27 28 29 30

a -0,07 +0,07 -0,07 0.,07 -0,07 0-o,07 -0,07
h 0,25 0,25 0,25 0,25 0,25 0,25 0,25
H 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5
d 9,1 9,45 9,9 11,6 12,15 14,0 16,5

Commas indicate decimal points.
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TABLE 31 (continued) /80

Number of the body

, 31 32 33 34 35 36 37 38

,i - 0,25+0,22 -0,19 +0,05 -005 +0,07 -0,07 +0.05 ,.05
h 0,25 O,20" 0- .,5 0,5 0,5 0,5 0,5 0,5

H 0,5 0.5 1,0 1,0 1,0 1, 1,0 1 0
d 18,7 19,45 1,15 3,35 4,5 5.05 6,3 7,1

Number of the body

> 39 40 41 42 43 44 45
0
m 0

o -0,04 +0,04 +0,07 -0,07 +0,07 -0,07 +0,03
h 0,5 0,5 0,5 0,5 0,5 0,5 0,5

H 1,0 1,0 1,0 1,0 1,0 1,0 1,0

d 8,15 8,25 9,05 9,15 9,35 9,85 19,0

_ - _Number of the body

2't 46 47 48 49 50 51 52 53

o +0,05 -0,05 +0,07 -0,07 -0,04 +0,04 +0,03 -0,05
A 1.0 1.0 1,0 1,0 1,0 1,0 1,0 1,75
H 1,75 1,75 1,75 1.75 1,75 1,75 1,75 3,25
d 1,05 3,15 4,25 4,85 8,15 8,25 18,75 0,75

Number of the body

54 65 56 57 58 59
od 4, B.0

a -0,05 +0,07 -0,07 -0,04 +0,04 +0,03
h 1,75 1,75 1,75 1,75 1,75 1,75
H 3,25 3,25 3,25 3,25 3,25 3,25
d 3,0 4,05 4,6 8,15 8,25 18.0

Commas indicate decimal points.

The results of the calculation are as follows: A = - 0.024 mgl, and
B = 0.0665 mgl/km. Figure 21 shows the observed anomaly and the anomaly from
which the linear components of the field were excluded.
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Figure 21. An Example of Excluding
the Linear Component of a Gravitational
Field.
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CHAPTER VI /81

DETERMINING THE PARAMETERS OF A PLANAR CROSS-SECTION

1. Posing the Problem

Earlier we examined problems in which we searched for positions of geo-
logical objects at which the difference between the observed and the theoretically
calculated anomalies would be the least possible. Some parameters were considered
constant. This relates primarily to planes. Let us look at Figure 22. Here
an observed anomaly of gravitational force is shown. A diagram of the geological
structure (cross-section along the profile) has been constructed on the basis
of the totality of geological data, while taking into account the anomalous
field. The direct problem has been solved for the given distribution of per-
turbing masses. We will compare the observed anomaly and the solution of the
direct problem. Even the most cursory analysis shows that a single shift in
contours cannot give us a satisfactory result. It is certain that, analogous
to the example examined in the Fifth Chapter, we can obtain here a solution
which obviously is far removed from the basic geological diagram. In addition,
it is necessary to change the rock densities only slightly for the observed /82
and calculated anomalies to coincide completely satisfactorily. After changing
the planar parameters, it is possible to move on to selecting the contours of
geological bodies. Thus arises the task of minimizing function (1.2) where
all the parameters in the geological diagram except for the density have been
given and are considered known.

.gfirst approximation

+ +0 ,0

2 4

Figure 22. Example of the Selection
of Planar Parameters.
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In its general form, the task can be formulated this way. Let a geo-
logical diagram be constructed on the basis of data about the geological
structure of the research regions, and with allowance made for the observed
gravitational field. In this process the gravitational effects from it can be
represented in analytic form:

Agtheo x, - f(x, Y., p, . ... P.. (6.1)

All further statements will be true for any other gravitational or magnetic
anomaly for which the additive property is valid. In this case the geological
diagram has been approximated by m elementary bodies (for instance, projections).
The parameter Pkj (k = 1, 2, ... , s) characterizes the location and dimensions

of these bodies. In order to solve the problem, we will use the method we
examined earlier. Then this functional is subject to minimization:

F n=IAge!xi, y)- Agtheo(xi, yM)2  
(6.2)

In order to set up this functional, n points have been fixed in the field
of observed values Agobse (x, y). These are descriptive points where the field

has extreme values, turning points, gradient changes, etc.

Let us turn to (6.2). If one takes into account the fact that points
(xi, yi) are given, Agtheo (x, y) is expressed by formula (6.1), and all its

parameters except a. are given, then the functional F depends only on the

densities. Representing them as components of some vector {i.}, one can write

F F (a,, ... , ,). (6.2a)

The expression (6.2a) can be minimized according to the computation diagram
examined in the first chapter. We will write only the expressions for the
derivatives

n

F'oi = -2 ] [Agobse(x, y d -
i = (6.3)

- Agtheo(xl, y!)] f (xi, P, P, P2/..... Pji).

In connection with the fact that, by their nature, planar parameters for
homogeneous elementary bodies are entered by means of a linear multiplier,
another approach to minimization (6.2a) is possible. In this process it is
necessary to somewhat change the way the problem is posed. Having fixed n
points with coordinates x. and yi., we can compare the values of the observed /83

and calculated anomalies from the geological diagram

m m

Agobse(x, y) = Fi (x., Yi. Pi, P2, ... I p5 i) = oifl (xi, y). (6.4)
i= 1 ;i=
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Expression (6.4) is a system of n linear equations with m unknown parameters
a.. It can turn out that n is greater than m, when we would be dealing with a

re-defined system of linear equations. If n is less than m, then (6.4) will
be a system without supplementary definition. Both in the first and in the
second cases, the system can be solved by using the method of the least squares.
We will write it in matrix form

Ka = a, (6.5)

where [f (xI, ,) f2 (x, y) ... f, (x 1, y,)
f (x2, y 2) f, (x,, y 2) . . ,, (x2, y2)

[a Agobseexl, Yi)

a a Ago(x, Y) g,

, Agobse(x,, y,) oAg,

We find vector a from the fully determined system of linear equations

K'Ko = K'a, (6.6)

where K' is the transposed matrix K.

As is evident from what has been said, the calculation process in its detail
depends on which elements are used to approximate the geological model. The
perturbing bodies are broken down into a sum of straight projections. Here two
cases are distinguished, i.e., two-dimensional and three-dimensional geological
models.

The Two-Dimensional Case

The geological cross-section is given by selection of straight projections,
i.e., four-dimensional vectors with coordinates ai., h., H., dj (j = 1, 2, ... ,

m). For a gravitational force anomaly the form of the function f (x, h., H., dj)

can be determined from formula (3.1). If the calculations are carried out for
the VxZ horizontal gradient anomaly, then the form of the same function will

be established from the formula (3.1a).

The Three-Dimensional Case

The geological model is given by selection of straight projections which
are finite in space, i.e., six-dimensional vectors {a., h., H., 1 1 2j, dj)
(j = 1, 2, ... , m).
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For a gravitational force anomaly the form of function f (x, y, h., H., /84

1lj, 12j, d ) can be determined from relationship (4.1). If the calculations

are done for anomaly Vxz, then the same function can easily be written from

formula (4.2).

2. Examples of Solving the Problem

We will illustrate the solution to the problem by the following example.
Figure 22 shows a geological model constructed on the basis of a fairly detailed
study of available geological material and an analysis of the observed field.
In the region four geological objects with densities of 2.65; 3.05; 2.87; and

3
2.76 g/cm have been distinguished. The density of the enclosing rocks is

accepted as being equal to 2.71 g/cm 3 . The dimensions of each body in space
are determined on the basis of a map of the anomalous field. The distribution
of the force of gravity was studied on the basis of profiles which were selected
over the extent of each object. The configurations of the geological bodies
located in the research area are represented as a whole by a sum of steps which
are finite in space. In all, 84 steps have been given.

Forty-one points were used to interpret the gravitational force anomaly in
the profile. The direct problem has been calculated for the given model. The
selection of contours of the perturbing bodies was made according to the method
described in the fourth chapter. The results of these calculations are shown
in Figure 23. The outlines of the perturbing bodies changed, especially that
of the rocks with a density of 2.87 g/cm 3 . The horizontal thickness in the /85
section near the surface does not agree with known data.

first approximation

/gobse

F9seleted i Cno

9 2 3 4 . , :6- ,7 9 1o

- 76

22,7f

Figure 23. Example of Selecting Contours

Without Changing Density Parameters.
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We will compare the observed field and the result of solving the direct
problem. They basically differ in amplitude, but the left and right asymtotes
of the curves are relatively close. This makes it possible to propose that the
basic errors in the geological model are caused by density properties.

We will select density characteristics. The new values of the excess den-
sities are shown in Figure 22. As is evident, some of the geological objects
are not homogeneous. Thus, in one of the bodies a gradual increase in density
is clearly visible the more the depth increases, and in the others individual
heterogenous rocks are distinguished. By itself, this material required a
geological interpretation. In the same figure (Figure 22) the selected anomaly
is shown. It is certain that it differed in detail from the observed anomaly.
It is fully understandable that we could not obtain a good agreement between
the observed and theoretical curve; after all in this case only individual
densities were selected.

Now the results of the calculation will be subjected to analysis. The
researcher can restructure the model somewhat, define its parametric value more
precisely, and then move on to determining the configurations of the geological
bodies according to the method examined earlier. Having assigned the values of
the excess densities, we will again select the configuration of the geological
objects. The results of the calculations are shown in Figure 24.

9 selected
AYobse

7 9

Figure 24. An Example of Selecting Contours
With Allowance Made for New Density Parampter
Values.
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CHAPTER VII /86

AN AUTOMATED SYSTEM FOR INTERPRETING GRAVITATIONAL
ANOMALIES (THE MINIMIZATION METHOD)

1. General Remarks

As is well-known, the inverse problems in gravimetric survey, in their
most general form, are associated with incorrect problems in mathematical
physics. There are two approaches to solving these problems. One of them is
based on special regularizing methods [23, 43, 62-67], while the other approach
consists of pre-selecting the class of the solution. All the parameters of
the geological features are found in the selected class. Then they can be
determined in a uniform manner [62].

Use of the functional minimization method to calculate the elements of the
occurrence of geological features ensures adherence to the specific class of
the pre-selected problem. This is the only way to regularize the incorrect
problem.

The fast descent method used to solve inverse problems is similar, while
the calculation method described in the first chapter works only for monotonic
convergence.

If, when interpreting a specific anomaly, we proceed from various hypotheses
about the geological structure, i.e., in each case the initial geological model
is different, then the results of the minimization will naturally also be
different.

It would evidently be erroneous to assume that different geological
hypotheses for the same anomalous field would lead to different minima of one
functional, and that one of these would be global. The fact is that in each
case a different function is subject to minimization. In form, these are all
the same as (1.2), but in content they depend on the constant parameters not
subject to change.

We would like to emphasize that often an unsuccessful solution obtained
due to a poor initial approximation will channel the interpreter's thoughts
into a new area. In this case a new model of the geological structure is
constructed, and one begins again to solve the problem.

2. One Possible Means of Selecting Initial Approximations

When solving the problem, it is necessary to minimize function F = F (P1;

P2; ... ; Pm) which depends on m parameters. In order to solve the problem, it
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is necessary to select the vector {P()} (j = 1; 2; ... m). The value of this /87

vector's parameters can be calculated in the following way. For each of the

parameters, let its upper and lower limits of possible values (o)} and p
jH  jB

be determined. This can be done without any kind of preliminary calculations.
(o) (o)

The totalities {p } and {p } can be regarded as the coordinates of two

points in m-dimensional space for the parameters. The straight line L which
unites these two points should be drawn through the entire area and be diagonal
to it. Therefore, it is natural to search for the points of the null approxi-
mation of this straight line. Each point on the straight line has its corre-
sponding value F. It is necessary to select as the point of the null approxi-
mation that where F = Fmin. In order to find these points, it is necessary to

3F
solve the equation - = 0 or, in its expanded form

F F CF a 0cos a, 3 cos .+ + cos ,,, =0.

Here al, a2, ..., a are the direction cosines of straight line L which are

expressed by

Cos pa (I = 1,2 .... nz).

k/ P n --IH I
i=

Function F along straight line L can be expressed as the function of one para-

meter 1, and for this purpose it is sufficient to establish p = (o) + cos a .- PjH j
Now it is possible to find the function's minimum by using the ordinary method.

The sample method may be used to look for the roots of function f (1) = F
0. This method, which is well known in mathematical analysis, is based on
the fact that the interval (0, L) which is included between the initial point

p andthe terminal point (o)}, is divided into s sections (ai, b) wherejH jB a b
a = 0, b = L, a. = b
o s i-(a

We will find the intervals where f (a).f (b) < 0. We will calculate a b).

If the numerical value of If a 2 is sufficiently small, then 11 a 2
is the root of the function. The calculations are finished for this section.

The search for the following sections continues. Otherwise, when f (a) f a + b
Sa + b a + b .< 0, we examine the interval a, and when f (a) f >0 we examine

the interval (a2 , b) . It is easy to apply this method on the computer.
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When all of the roots of the equation have been found, it is possible to
calculate the initial values of the parameters

{Pilit n(p + et cos a.initial

It is obvious that there will be as many initial approximations as there are /88
roots of function F' (1). For each root a value F (1) should be found. The
most probable values are those at which F (Z) has its smallest value. However,
it should be regarded as worthwhile to search for a solution at all values Zex t '

It is possible to accept as a final variation the one which best satisfies the
known data on the geological structure of the region.

If the analytic expression of function F is sufficiently complex, then its
minimum can be determined by normal tabulation. In order to check the behavior
of function F or straight line L and to find the minima points, we will divide
a section of the straight line into s equal intervals such that they are
sufficiently small that we are confident that the changes in F will be monotonic
within the limits of each section. Now it remains for us to calculate the value
of function F at the sequential points on the straight line, the coordinates
of which are determined thus:

ip k')} = {p k-' ,.i;_,-- Api},
(0) (0)

where Ap,=--'" "p. k is the number of the point, 0) =pji). The minima

points are determined from the condition

Fk- > Fk< Fk H-

Each of these points, and there can be several of them on the same line, is
sampled as an initial approximation.

3. The Basic Components of the Automated System

On the basis of what has been said, one can state that in the practice of
gravimetric survey work an automated system of processing and interpreting the
observed data can be constructed. This system consists of two independent
parts. The first part combines the calculations for processing the observation,
introducing various correction factors and reduction factors so the anomalous
effect can be regarded as caused only by geological heterogeneities. Calculations
of field transformation are also associated. The charts of the anomalous field
and the various transformations are the final result.

The first part of the automated system has been developed and is being
used by many scientific research and industrial organizations.

The second part consists of several sequential stages. It is intended to
begin operation after a geological hypothesis has been constructed in the form
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of sections of structural models, based on study of the anomalous fields and
all information about the geological structure of the region being investigated.
In this process a special role is attributed to the planar characteristics of /89
all the various types of rocks included in the model. The preliminary results
of the quantative calculations can be used to create a diagram of the initial
approximation. One condition is introduced: one must know how to calculate
the gravitational effect from the component diagram. For this purpose, the
geological structure can be approximated by selecting cylindrical, spherical,
or other bodies. In a complex geological situation the perturbing bodies can
be approximated by selection of contacts (gravitational steps). For three-
dimensional bodies the elements of the geological system can be a projection
finite in space. All the components of the automated systems are shown in the
block diagram. The initial data are two groups of information. The first
includes information about the observed fields, and the second contains infor-
mation about geological structure (the hypothesis is the first approximation).

Initial Data: The Anomalous Field,

' A Geological Model (First Approximation)

Solution o the Direct
Problem -

-Determlnlng M
Background
Function

Selection Selection of Contours

of Planes for the Geological
Model

SAnalysis

Diagram o

Geological o
Structure

Block Diagram of an Automated System for Inter-
preting Gravitational Anomalies (The Minimization
Method).

The following functional is subject to minimization

V b Vh o (x, y,!. (7.1)

At the very beginning Vtheo (x, y) is calculated, i.e., the direct problem is /90

solved. This intermediate result has an independent value. Comparing the
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observed and the calculated fields, the interpreter can introduce into the in-
itial model additions and changes in case there are very large errors. This
must be done in such a way that the succeeding stages are directed at auto-
matically solving the problems which can be formulated this way: change the
geological model in such a way that the observed and theoretically calculated
anomalies coincide as well as possible. It is completely natural that, if
there are insufficient data in the geological model, then it is impossible to
obtain an effective solution to this problem. We will clarify this with an
example. Figure 25 shows a gravitational force anomaly and the geological
cross-section of the initial approximation. The investigator considers that
the negative gravitational effect is caused by a large block of rock with an
excess density of 0.03 g/cm 3 . The geological cross-section is approximated by
several projections. Comparing the observed and the theoretical curve, we see
that a geological body of an increased density has been omitted in the model.
It should be introduced, and then one should more precisely define the initial
approximation. This same figure shows the result of the automatic selection
(the fourth stage of the system) without further definition of the primary
model. It is evident from the configurations of the object that there was an
attempt to introduce heavy masses within the body. It is impossible to draw
the contours with confidence in this case, since the necessary information is
lacking.

SX In the second stage of the automated
system, the local components of the field are

.Jobse determined (if this is required). In formula( (7.1) all values except the parameters of the
\ background function f (xi, yi) have been

9se*lec* . assigned. It is almost always possible to
.... primaty m approximate the local background by using a
pproxate linear function with the form A + Bx + Cy.

If there are geological premises, then the
form of function f (x, y) can be made more

10 complex. No matter what function we use to
approximate the local effect, it is always
necessary to thoroughly analyze the calculation

JOI x results and to give it a geological explanation.
In the opposite case some function can be

tI selected as the background function, but its /91

00f- nature will be completely different. Let us
examine this using an example.

We will assume that n'o contact has been
introduced between two blocks of rock, i.e.,

Figure 25. An Example of a gravitational step has been omitted. Its
Selecting the Contours of a effect is included in the observed field, but
Perturbing Body Without In- not in the theoretical function. This means
troducing Data About a Heavy that some function which complements this
Gravitational Body Located omission will be determined. As a result of
Within the Massif. the analysis, the interpreter should not make

this mistake.
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Now the local component is excluded from the observed function. The in-
trepreter is required to solve the problem of the next step in the calculation.
If the differences between the observed and the theoretical anomalies are
basically amplitudinal, and if the planar parameters in the geological model
have approximated values, then naturally the third stage should be the selection
of the planes. The fourth stage will be the selection of the geological model's
contours. If the interpreter has decided that the basic differences between
the observed field and the calculated field can be explained by an incorrect
configuration in the geological model, then the third stage is the selection
of contours. Then follows the selection of the planes (if this stage is re-
quired).

Finally, the interpreter should analyze all the computation stages. Some
stages can be repeated, and their sequence can be changed. If the geological
model has undergone significant changes, then it can become necessary to re-
calculate the background function; after all it was determined for a particular
geological structure. Then the calculations can be repeated, i.e., one can do
more literations. After each stage the divergence between the iterations is
determined, and the interpreter decides whether to continue the calculations.

4. The Results of Sampling the Effectiveness of the Automated System for
Interpreting Gravitational Observations When Solving Geological Problems*

The minimization method has been used with success to calculate the block
structure of deep sections and surface areas of the Earth's crust, thus de-
fining more precisely the structural peculiarities of the outline of the
crystalline bedrock concealed under a thick covering of sedimentary formations.
This method also makes it possible to study more in detail the deep differentiated
intrusive massifs, and the quantitative characteristics of the formations with
their complex sedimentary structure, these formations being characteristic of
the geosynclinical and flexible parts of the Earth's core, for map making in
difficult regions, and for solving other geological problems.

In the following sections we will cite several examples of determining the
quantitative characteristics of geological structures.

Studying the Structural Forms of the Outline of the Crystalline Bedrock /92

The territory on the western incline of the Ukrainian shelf was studied.
Structurally, the region is characterized by a two-layer structure. The lower
layer is represented by a multifolded complex of Precambrian crystalline rock,
among which granitodes of the granodiorite type predominate. The upper layer
is characterized by a horizontal or very gently sloping occurrence of sedimentary
formations of loess (average density 2.12 g/cm 3) and volcanogenic sedimentary
rocks of the Volhynian Series (2.8 g/cm 3). The characteristic features of the
gravitational force field which corresponds to the given territory is the pre-
sence of unique zone or belt nearly latitudinal in direction and consisting of a

*This section was written in collaboration with V. A. Rzhamitfyniy.
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series of relatively isometric positive anomalies of varying intensity. This
zone does not appear in a magnetic field. The results of interpreting the
data of the resistivity surveying indicate variations in the surface of the
crystalline foundation.

Figure 26 shows the geological cross-section of one of the areas in the
anomalous zone. The crystalline rocks were investigated to a depth of 30 to
65 meters by drill-holes bored into the center of the anomaly. In the marginal
zone the resistivity surveying establishes this type of rock at a depth of 300 -
350 meters. The presence of a strong gravitational force anomaly and a signi-
ficant fixed value for the density gradient at the boundary between the crystal-
line and the sedimentary rock makes it possible to determine the parameters of
the perturbing feature. In the given case these are the outlines of a pro-
jection of the crystalline foundation. The density characteristic of the rock
making up the projection were determined by approximation, as was also the
average density value of the rocks opened by the drill-holes (2.82 g/cm3 ). The
approximation model was constructed by using all geological and geophysical data
and was presented in the form of a geological cross-section in which the rocks'
main characteristic was their density. The body which caused the anomaly was
considered to be a three-dimensional object. The isometric form of the anomaly
in the map served as the basis for this premise. The direct problem is solved
from the model of the first approximation. The anomalous effect obtained in
this process was compared with the observed gravitational force anomaly. There
exists a considerable disagreement between the anomalies both at their maximum
points as well as in the sloping regions. However, the disagreement is very
regular, i.e., at every point the calculated anomaly remains below the observed
anomaly, i.e., is small in absolute value. This type of discrepancy may be
caused by the following factors: either the density of the rocks which make
up the projection has decreased or the depth of its occurrence has not been
correctly determined. Since the distance to the surface of the foundation was
determined on the basis of drilling data and the results of resistivity surveying,
it is possible to change the parameters of the projection only within the given
depth limits, from 30 to 350 meters. Since the greatest disparity between the /93
calculated and observed anomalies occurred in the zone of the maximum, and since
the average value of the rocks' excess densities in the foundation has been
determined in approximation, it became necessary to begin solving the inverse
problem with automatic selection of the excess densities. As a result of the
solution, the excess density of the crystalline rock was found to be 0.74 g/cm3

as opposed to the 0.70 g/cm 3 adopted in the first approximation model. In this
process an insignificant differentiation of the density parameters within the
limits of ± 0.01 g/cm 3 was established on the basis of depth. This can be ex-
plained by the lithological peculiarities of the rocks in this region.

From Figure 26 it is evident that the selection of density parameters
yielded a satisfactory agreement between the observed and calculated anomalies
in the zone of the maximum. The next stage of the automated system makes it
possible to solve the problem concerning the configuration of the geological
feature. This amounted to automated distribution of the elementary projections /94
within the limits of the assigned depths at the selected density values. As a
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result of the selection, almost complete agreement was attained between the
gravitational force anomaly calculated from the cross-section selected and
the observed anomaly.

+ _
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Figure 26. An Example of Selecting Density Para-
meters and Contours for the Topography of the
Crystalline Foundation: 1) Observed Gravitational
Force Anomaly; 2) Anomaly Calculated From the First
Approximation Model; 3) Anomaly Calculated From
Model With Selected Densities; 4) Calculated Anomaly
After Selection of Contacts; 5) Sedimentary Deposits;
6) Crystalline Rocks of Projection; 7) Relief of
Projection in First Approximation Model; 8) Relief
Selected by Computer; 9) Drill Holes.

Among the geological results obtained by use of the minimization method,
mention should be made of the differentiated density boundary in the sloping
portion of the projection and the gentler slopes themselves in contrast to the
sharp, abrupt scarps shown in the first approximation model. The results ob-
tained can be used in future investigations into the nature of the foundation
relief.

Figure 27 shows an example of a more complex case of determination of
parameters which give a quantitative estimate of the projection of a crystalline
foundation. Dense basalt mantles of the Volhynian series which occur in the
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form of a stratum with a thickness of approximately 70 meters at a depth of /95
around 70 meters also take part in forming the observed gravitational anomaly.
The development boundary between these two formations is clearly fixed in a
magnetic field.

. Ag obse
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Figure 27. Example of Exclusion of Linear
Components of the Regional Background and
Selection of Relief Outlines of a Crystalline
Foundation: 1) Observed Gravitational Force
Anomaly; 2) Observed Anomaly With Allowance
Made for the Local Background; 3) Amomaly
Calculated From the First Approximation Model;
4) Anomaly Calculated From the Second
Approximation Model With Allowance Made for
the Local Background; 5) Anomaly Calculated
From the Selected Diagram; 6) Crystalline Rock
of the Formation; 7) Basalts; 8) Sedimentary
Deposits; 9) Outline of Projection in the First
Approximation Model; 10) Outline Selected by
Computer.

As in the first case, all information about the structure of the region
has been used to construct the first approximation model. In solution of the
direct problem a considerable divergence was noted between the calculated and
the observed anomaly, a divergence reaching 1 mgl in the left part, 4 mgl in
the central part, and 3 mgl in the right part of the cross-section. The
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difference of 2 mgl may be ascribed to incorrect selection of the level. A
2 mgl difference between the extreme right and left parts of the anomalies
being compared (where the effect is felt least of all) can be explained as the
influence of a large anomalous mass located far beyond the limits of the given
cross-section. This most likely is the effect of an abrupt general movement
in the surface of the foundation from right to left. This effect can be in-
cluded in the general local background, which in the given area can be approxi-
mated by the linear function A + Bx. In this process the anomalies being com-
pared are automatically combined at one level. The divergence between them
in the central or maximum part can perhaps be explained by insufficient
elevation of the central part above the general level of the foundation, or
perhaps by the density differential of the rocks which make up the projection
in the sketch. Since we had no confirmation of the second premise, it remained
possible to reduced the occurrence depth of the highest part of the uplift.
This correction was reflected in the second approximation model. The bend in
the calculated anomaly was caused by a lack of mass of increased density in
the aperture between the basalt mantle and the left slope of the projection.
This discrepancy in the anomalous field can be eliminated by increasing the
excess mass by moving the projection within the assigned depth limits.

The direct problem is again solved from the augmented geological model.
This is done in order to estimate the effects of the corrections been made in
the first model. General agreement is noted between the calculated and the
observed anomaly. After the parameters of the local background had been deter-
mined, the anomalies agreed quite well in configuration (and, what is most
important, they agreed in the maximum part); this is evidence of the fact that
the occurrence of the anomalous features taken into account were determined
correctly. The configurations of the perturbing features were then determined.
The results of the selections are shown in Figure 27.

Let us examine one more example. Figure 28 clearly demonstrates the
capability of an automated system in interpreting a more complex gravitational
force anomaly. Since there was no material available on the geological features
which caused the observed anomalies, then, by anology with areas which had
been subjected to more extensive study, and which were similar to the territory
under investigation, the following concept of the geological structure was
evolved. The anomaly is the aggregate effect of a thick tectonic zone made
up of cataclastic rocks and causing a broad minimum, as well as of a projection
of foundation rock causing a less broad maximum. The anomaly was primarily /96
complicated by the very intense background caused by the general sharp sub-
sidence of the foundation. Figure 28 shows the anomaly already free of the
linear component, which was allowed for automatically as in the previous example.

A highly simplified model of the geological medium which served as the
first approximation model for quantitative calculations was constructed with
allowance made for the following circumstances. The depth of the foundation
surface, according to resistivity surveying data, is 600 meters. The cataclastic
rocks within the limits of the tectonic zones are on the average 0.1 g/cm 3

lighter than the massive rocks, and the massive rocks themselves of the foundation
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0.7 g/cm 3 denser than the sedimentary formations. It is evident from Figure 28
that the anomaly calculated from the first approximation model differs con-
siderably in absolute value from the observed anomaly, although it copies it
in its general outlines. The solution of the inverse problem by automatic
selection of contact points not only has made it possible to achieve good
agreement between the anomaly calculated from the selected model and the
observed anomaly, but has also made it possible to draw certain geological /97
conclusions. Although the premise which served as the basis for creating the
model of the geological structure has not been confirmed by actual geological
material, it nevertheless gives us reason to state that the given complex
gravitational force field anomaly consisting of a broad minimum and a relatively
narrow maximum may most likely be caused by a thick tectonic zone which tends
toward large values for the field of gravity. The maximum in this case may
be caused by block uplift over the destruction zone or along one of the feather
joints. The expansion of the tectonic zone in the upper part of the cross-
section may be ascribed to the presence of a thick linear crust deriving from
weathering of cataclastic rocks.

+ +

+ + + + 4

+ + + + + +
+, + 4 + + + +

Figure 28. Example of Selection of a Geological
Cross-Section in Interpretation of a Gravitational
Force Anomaly: 1) Observed Anomaly; 2) Anomaly
Calculated From First Approximation Geological
Model; 3) Anomaly Calculated From Selected Model;
4) Crystalline Rocks; 5) Zone of the Catclasis;
6) Sedimentary Deposits; 7) Outline of Geological
First Approximation Model; 8) Outline of Geological
Model Selected by Computer.
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Possibilities of Studying Folded Structures

A region was studied within the limits of a territory which was characte-
rized structurally by a two-layer structure. Metamorphic rocks of the gneissic
series, as well as granitoids, have taken part in the formation of the lower
multifolded layer. The upper layer is represented by cenozoic sedimentary
deposits lying horizontally on the waterworn precambrian surface. The basic
structural units which characterize the precambrian formation in the territory
being investigated are the dome-shaped branchyanticlines. Their cores are made
up of biotitic porphyroblastic granites (with a density of 2.63-2.67 g/cm 3).
In the other gravitational force field anomalies they are manifested in the
form of relative broad gently sloping minima. The dome-shaped structures
mentioned are flanked by amphibolous biotitic medium-grained migmatites
(2.71-2.72 g/cm 3). The development areas of the latter are characterized by
quite intensive (up to 3.0 mgl) maxima in the gravitational force field. Some-
times tectonic contacts are noted between the above-mentioned various types
of rock. Of the tectonic dislocations of a local nature, the sublatitudinal
ones are considered to be the most recent. They control the movements of the
dike complex, i.e., diabases (2.8 g/cm3 ). Biotitic gneisses (2.66 g/cm3 ) play
a significant role in the geological structure of the territory. Intense
erosion of the cataclastic rocks has caused the rugged topography of the sur-
face of the crystalline base. In this process significant depressions are
traced which are filled by light Cenozoic carboniferous deposits as well as
areas where the weather-worn crust has developed to a great depth. These
depressions are clearly reflected in the gravitational force field in the form
of broad minima.

The presence of a differentiated gravitational force field within the
limits of the territory the geological picture of which is characterized by the
development of different types of rock differing quite sharply in density
characteristics (the average density was determined on the basis of samples
from natural outcrops and from the core samples of drill-holes) have allowed us /98
to attempt to analyze the abyssal structure by using quantitative interpretation.
A first approximation geological cross-section was constructed for this purpose.
In order to create this cross-section, all available factual geological material
and the results of qualitative interpretation of geophysical observations were
used. The depth of occurrence of the proposed structures was chosen tentatively
with allowance made for relative comparison of individual areas of the gravita-
tional force field anomaly along the profile. The entire geological model was
converted to a density cross-section. It served as the first link characterizing
the correctness of the hypothesis regarding the structural interrelationships
among the petrographic types of rock distinguished. With this purpose in mind,
the gravitational force anomaly was calculated from the cross-section of the
first approximation and was compared with the observed anomaly. The results
of this comparison are shown in Figure 29 and indicate that the geological
hypothesis may be accepted as a basis. However, certain additions to the first
approximation model are still required. Without such correction, it is impossible
even in the most tentative approximation to solve the problem of the structural
interrelationships of the rocks. In particular, the insufficient amplitude of
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the maximum portions of the calculated anomaly indicates that the depth of the
main structures made up of dense amphibolous biotitic migmatites is obviously
small and should perhaps be increased considerably, possibly even multiplied
manifold. This premise has made it possible to increase the depth of the
structures to 1.5 - 2 kilometers, i.e., almost fourfold in comparison to the
initial cross-section.

The presence of narrow local maxima within the limits of the broad minima
which correspond to the depressions and wide cataclastic zones often accompanied
by dikes of diabases has made it possible to assume the presence of thin dike-
like bodies of dense rocks. Even with a small thickness (on the order of 100 -
200 meters), these bodies could be reflected in the gravitational force field,
since they are of considerable size and should be detected in the form of relief
projections within the limits of the depressions as younger and denser formations.
In addition, as research has shown, the dike formations within the limits of
the region are usually characterized by a branchlike arrangement of several
thin bodies, and this makes it easier to detect them in a gravimetric survey.

Thus, in the revised cross-section several thin dike bodies are distinguished
which are similar to the one reflected in the cross-section of the first approxi-
mation.

The presence of two relatively intense local minima within the limits of
the maximum which formed by the structure of the left half of the cross-section
has made it possible to increase the development depth of the body of cataclastic
biotitic gneisses reflected in the cross-section of the first approximation,
and has also made it possible to assume the presence of a body of the same
rock, but of smaller dimensions, in the zone of the minimum near the left edge
of the cross-section.

Within the limits of the tectonic contacts, which are characterized by /99
zones of cataclasis, the form of their minima and their intensity have indicated
a somewhat lesser thickness of the largest zone and at the same time a great
depth of development of the cataclastic rock. The intense gradient in the ex-
treme right part of the cross-section indicates a steeper occurrence of tectonic
contact and a corresponding increase in the depth of the migmatite structure
at this end of the cross-section.

The depth of occurrence of the foundation is very small (10 - 60 meters),
while the difference between the crystalline and the sedimentary rocks reaches
0.92 g/cm3 . Even insignificant variations in the topography of the foundation
are sharply reflected in the gravitational force field. Therefore, determining
refinement of the parameters of the depressions was a very important task. /100
Solving this problem was made easier by the fact that in a number of cases the
rock mass had been drilled through. The corresponding data were taken into
account on introduction of additions and revisions into the initial model.
Because of the small thickness of the sedimentary deposits, the topography of
the crystalline foundation is shown on a scale which exceeds by a factor of 10
the vertical scale of the crystalline rock structures. These and other revisions
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are reflected in the second approximation model (Figure 29). In order to estimate
the effect of the correction factors introduced, the direct problem was again
solved on the basis of the geological second approximation model. Comparison
of the observed and calculated anomalies revealed relatively good agreement
between their configurations, especially in the extreme portions of the force
of gravity curve. This indicates that the correction factors were proper.

I-
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I 
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Figure 29. Geological First Approximation Model
(a), Geological Model Modified After Solution of
Direct Problem (b), and Geological Model Selected
by Computer (c): 1) Observed Gravitational Force
Anomaly; 2) Anomaly Calculated From Density Cross-
Section; 3) Anomaly From the Calculated Cross-
Section With Allowance Made for the Locak Background;
4) Cenozoic Deposits; 5) Gabbro-Diabases; 6) Amphi-
bolous Biotitic Migmitates; 7) Biotitic Granites;
8) Biotitic Gneisses; 9) Cataclasites; 10) Tectonic
Contacts.

Along with the agreement mentioned above between the configurations of the
anomalies being compared, a divergence is noted in their absolute value, one
which increases gradually from left to right along the relief. In the extreme
right portion this divergence reaches 1 mgl. It is impossible to explain this
by the geological peculiarities of the rock, since the same granites with a
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density of 2.63 g/cm3 are detected both in the left and the right portions of
the cross-section. Therefore, this divergence can only be explained by the
influence of anomalous features which are either located far beyond the limits
of the area or which occur at a greater depth. This effect can be calculated
in the form of linear function A + Bx, which is the local background for a
given territory. When making quantitative calculations, it is absolutely
necessary to make allowance for the effects of the local background. After
allowance has been made for the local background, the calculated anomaly assumed
another form and exhibited much better agreement with the observed anomaly.

The last stage of the construction was solution of the inverse problem.
The elementary projections characterizing contacts between rocks of different
densities were arranged in a pattern permitting the best possible approximation
of the anomaly calculated from the selected cross-section to the observed
anomaly. The results of solution of the inverse problem are shown in Figure 29.
As we see, within the limits of the possible measurement error, the agreement
between the anomalies is sufficiently good. However, it can be found immediately
that in some cases a discrepancy is caused by insufficiency of the geological
information taken into account in setting up the geological cross-section of
the first and second approximations. This applies principally to the minor
details of the cross-section. The large features are characterized quite clearly.

Even with insignificant initial information about the geological structure
and with few details about the anomaly as concerns its profile, the system has
made it possible to obtain good results for all the questions examined.

Geological Mapping of Complex Regions /101

We will examine a small area within the limits of the Central Bug River
Valley. A large amount of factual geological and geophysical material was
collected. The initial data for the selection were the observed gravitational
force anomaly and the primary geological cross-section containing the density
characteristics of all the various types of rocks. The calculation was carried
out by use of a system of parallel profiles intersecting the basic geological
structures of the region, and also by using small profiles within the limits
of the individual structures. This distribution of profiles makes it possible
to correlate spatially both the larger structures and the individual extended
bodies. In the area under study there are geological features the configurations
of which have been fairly well studied by geological and geophysical methods.
In this case the dimensions of the bodies were assigned in advance and could
not change during subsequent calculations. Individual areas of the Tarnovatskiy
syncline which has been drilled in detail can serve as an example. The syncline
is filled with rocks of the metabasite and ultrabasite complex, and these rocks
differ sharply in their physical properties from the relatively monotonic mass
of mignatites. The latter are more common in the region in question and serve
as a kind of intrusive mass for all the other rock complexes. After the direct
problem had been solved on the basis of the initial geological cross-section,
the various items of supplemental information and corrections were introduced
into the model. The amount of work required by this stage depends completely
on the reliability of the initial geological model.
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Figure 30 shows a diagram of the geological structure of one of the areas
in the region being investigated. The Tarnovatskiy syncline is clearly to be
distinguished. In the northern parts it is a shallow (150-200 meters) fold
with a very gently sloping of the limbs. To the south one observes subsidence
of the fold bend to a depth of 600 meters and more, while the width of the
structure simultaneously decreases. This causes gradual increase in the steep-
ness of the fold limbs until inverted rock bedding is formed in the eastern
limb. The structure is made up of dense (a = 3.04 g/cm 3) rocks of the metabasite
complex, but to the south strata of amphiolous gneisses (density 2.9 g/cm 3) are
included in its structure. Small bodies of serpentinites (density 2.46 g/cm 3)
are clearly fixed. They cause local minima in the zones of the gravitational
force maxima. These maxima are caused by the dense rocks of the productive
stratum. On analyzing the gravitational force field, we found a basis for
assuming the presence of several small serpentinite bodies in the shallow
synclinal folds to the west of the Tarnovatskiy syncline.

It has been established that the bodies of the serpentinites and the
serpentinous ultrabasites coincide in space with the metabasite massifs and
normally comprise small concordant massifs of slight thickness. Relatively
large areas of individual bodies on the map within the limits of the Tarnovatskiy,
Kapitanovskiy, and Derenyukhinskiy [Translator's Note: as Transliterated]
synclines are caused by the very gentle slope of the rock strata within the /102
limits of these structures.

Thus it has been possible to distinguish within the plan and to observe
to significant depth a considerable number of large and small folded structures,
as well as a large number of individual extended bodies which take part in the
formation of the folds.

Small geological bodies are distinguished in the region in question. They
are made up of very dense and highly magnetic rocks of the skarn type which,
judging from the results of geological studies, are confined to the contact
zones between rocks of the metabasite and hyperbasite complexes and the granites.
In rare cases the thickness of these bodies reaches 100 meters over a considerable
extent. Their formation should probably be associated with the intensive in-
troduction of free magnetite into the active contact zone.

Even in the areas where the gravitational force anomaly is little differ-
entiated above anticlinal structures, it is possible to determine the spatial
position of individual bodies of dense rock which are included in the structural
formation. The geological charts and diagrams known up to the present have
shown large massifs of charnockites in the nuclear portions of these structures,
the presence of which explains the high background (up to 1000 y) and the mosaic
character of the magnetic field. There are no charmockites in our massif con-
struction, and the nature of the magnetic field is explained by the complicated
structure of these regions, within the limits of which considerable saturation
is noted by small bodies of dense, intensively magnetic rock such as amphi-
bolites, pyroxenes, amphibolous and biotitic gneisses, charnockites, and pink
magnetoactive fine-grained granites. The high magnetic intensity of the rocks
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mentioned is caused primarily by their considerable (from 1 to 3%) content of

free finely dispersed magnetite. This mineral is observed in microsections.

The rocks which make up the small bodies within the limits of the anticlines

are characterized primarily by the presence of free magnetite. These same

rocks in synclinal structures are manifested as practially non-magnetic ones.

It is probable that the singling out of free magnetite is caused by the
higher level of granitization of the rocks of the lower structural level.
Xenoliths of these rocks have a periclinal closure on relatively sharp (60-700)

drop from the center. This has served as the basis for distinguishing these

structures as anticlines or dome-shaped elevations. In our constructions they

represent formations in the lower structural stage in the form of hard blocks,
to which the development of linear folding by the rock in the upper structural
level is subject.

In order to map the rocks correctly, one must know the tectonic structure
of the region under investigation. The fracture tectonics, in causing the

block-like structure of the region, create a unique regional background for the

small structures in the uppermost layer of the Earth's crust, and these small

structures determine the intensive differentiation of the observed gravitational

force field. The exclusion of or allowance for this background makes it possible /104

to carry out quantitative interpretation of anomalies properly both for individual
profiles and for the overall map. In the region under investigation, the border

of the large blocks, which differ insignificantly in density, are clearly to

be seen. These tectonic contacts of the fault type are traced to a considerable

degree in extent and in depth.

The structural tectonic map of the region is predetermined by the presence

of two systems of tectonic distortion, a northwestern and a northeastern one,
of which the first exerts a more significant influence on the formation of

the small-block nature of the region's precambrian formations. In this process

a scalariform elevation (of the horst type) is noted in the central part of

the rigid blocks. It is possible that these elevations cause the formation of

the gently sloping folds made up of rocks of the gneissic mass. It should be

noted that not only are the folding of the rocks in the upper structural levels

subordinate to the contours of the rigid blocks; the tectonic distortions also

exhibit a tendency to bend around the central portions of these blocks.

It is quite typical that the elevated blocks consist of lighter rocks.

These block movements have affected chiefly the structure of the intrusive rock

mass, which is represented by monotonic migmatites with numerous xenoliths of

denser rocks. Therefore, it is possible to draw the conclusion that with depth

the density of the rock of the intrusive rock mass decreases to a certain limit.

This pattern can be explained by the higher degree of granitization, and accor-

dingly by the decrease in the number of xenoliths in the dense rock. It is

probably this that explains the considerable variations in the density of the

migmatites (2.51 - 2.67 g/cm 3).

The examples cited above show the effectiveness of using the minimization

method when solving problems in structural geology in various situations and

under various conditions of information coverage. It is natural that the more
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the area is studied from the geological viewpoint, and the more reliable is the
first approximation model, the more effective will be the use of an automated
system. However, even with the most scanty geological information, the system
makes it possible from the quantatitive point of view to estimate the reliability
of any assumption and to select the optimum geological model from among many
optional versions. This latter factor can serve as a starting point for bringing
geological investigations up to date.

Conclusion /105

In this work several questions relation to application of the minimization
method to interpret gravitational anomalies have been examined. A fairly com-
plete automated system of interpretation has been obtained: estimation of the
initial version of the hypothetical geological model, selection of the back-
ground function, refinement of the density parameters, and refinement of the
configurations of geological features. Over a period of several years this
method has been tested with a variety of examples. Good results have always
been obtained. It may be noted that on occasion, when the geological first
approximation model was very incomplete, results were obtained which contradicted
the geological premises. An analysis of this solution has always enabled the
interpreter to restructure his hypothetical model properly and to overcome any
contradictions which have occurred.

The same method can be used to create an automated system for interpreting
magnetic anomalies [50]. Of course, the methods described can be used most
effectively in cases in which the boundaries of the perturbing bodies form
steep contacts.

Lastly, the system described can be considered as a subsystem of a more
general system which would include other calculation methods.
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Figure 30. Geological Model and Cross-Sections of One
of the Areas in the Central Bug River Valley: 1) Observed
Gravitational Force Anomaly, 2) Anomaly Calculated From
Selected Cross-Section, 3) Anomaly Due to Fracture Tectonics,
4) Excess Density Value, 5) Serpentinites, 6) Amphibolites,
7) Amphibolous Gneisses, 8) Biotitic Gneisses, 9) Pyroxenite
Gneisses, 10) Charnockites, 11) Granites, 12) Migmatites,
13) Tectonic Distortions.

101
101



REFERENCES /106

1. Alekseyev, A. S. and M. M. Lavrent'yev, In the book: Matematicheskiye
Problemy Geofiziki [Mathematical Problems of Geophysics], No. 1, Siberian

Branch, Academy of Sciences USSR Press, Novosibirsk, 1969.

2. Aleksidze, M. A., Reduktsiya Sily Tyazhesti [Reduction of the Force of

Gravity], "Metsniyereba" Press, Tbilisi, 1965.
3. Andreyev, B. A. and I. G. Klushin, Geologicheskoye Istolkovaniye

Gravitatsionnykh AnomaZiy [Geological Interpretation of Gravitational

Anomalies], Gostoptekhizdat, Leningrad, 1962.
4. Aronov, V. I., In the book: Geofiz. Razvedka [Geophysical Prospecting],

Issue 6, "Nedra" Press, Moscow, 1961.
5. Aronov, V. I. and I. B. Konoval'tsev, Izvestiya Vuvoz, Geologiya i

Razvedka, No. 10, 1963.
6. Balavadze, B. K., Gravitatsionnoye Pole i Stroyeniye Zemnoy Kory v Gruzii

[The Gravitational Field and the Structure of the Earth's Crust in

Georgia], Georgian SSR Publishing House, Tbilisi, 1957.

7. Bas, R. G., et al., Geofiz. SB. AN USSR [Geophysical Collection of the

AN USSR], Issue 38, 1970.
8. Berezhnaya, L. T. and M. A. Telepin, In the book: Prikladnaya Geofizika

[Applied Geophysics], Issue 46, "Nedra" Press, Moscow, 1965.

9. Berezhnaya, L. T. and M. A. Telepin, In the book: Razvedochnaya Geofizika

[Survey Geophysics], Issue 16, "Nedra" Press, Moscow, 1966.

10. Berezin, I. S. and M. P. Zhidkov, Metody Vychisleniy [Calculation Methods],

Vol. 1-2, "Fitmatgiz" Press, Moscow, 1959.
11. Bondarenko, B. V. and D. N. Kravchuk, DAN BSSR, Vol. IV, No. 12, 1960.

12. Bondarenko, B. V., Trudy In-ta Geol. Nauk [Transactions of the Institute

of Geological Sciences], AN BSSR, Issue 3, 1961.

13. Budak, B. M. and F. P. Vasil'yev, Priblizhennyye Metody Resheniya Zadach

Optimal'nogo UpravZeniya [Approximation Methods for Solving the Problems

of the Optimum Equation], No. 11, Moscow State University Press, 1969.

14. Bulakh, Ye. G., Integral'nye Sootnosheniya Dlya Interpretatsii Gravitatsion-

nykh Anomaliy [Integral Relationship for Interpreting Gravitational

Anomalies], "Naukova Dumka" Press, Kiev, 1965.
15. Bulakh, Ye. G. and M. N. Markova, Metodicheskoye Rukovodstvo i Sbornik

Programm DZya Resheniya Obratnykh Zadach Gravirazvedki na ETsVM Minsk-22

[Methodological Direction and Summary of Programs for Solving Inverse

Problems of Gravitational Prospecting on the Minsk-22 Computer],

"Naukova Dumka" Press, Kiev, 1971.
16. Bulakh, Ye. G., et al., Metodicheskoye Rukovodstvo i Sbornik Programm Dlya

Resheniya Pryamykh Zadach Gravirazvedki Na EVM Minsk-22 [Methodological

Control and Correction of Programs for Solving the Direct Problem of

Gravitational Prospecting on the Minsk-22 Computer], "Naukova Dumka"

Press, Kiev, 1971.
17. Veselov, K. Ye. and M. U. Sagitov, Gravimetricheskaya Razvedka [Gravimetric

Surveying], "Nedra" Press, Moscow, 1968.

102



18. Volodarskiy, R. S., et al., Primeneniye Elektronno-schetnykh Mashin Dlya
Interpretatsii Gravitatsionnykh i Magnitnykh Poley [The Use of Computers
to Interpret Gravitational and Magnetic Fields], Gostoptekhizdat,
Moscow, 1962.

19. Voladarskiy, R. F. and T. I. Landa, Geologicheskaya Interpretatsiya
Gravitatsionnykh i Magnitnykh Poley s Pomoshch'yu EVM [The Geological
Interpretation of Gravitational and Magnetic Fields Using Computers],
"Nedra" Press, Moscow, 1970.

20. Gol'tsman, F. M., Statisticheskiye Modeli Interpretatsii [Statistical
Interpretation Models], "Nauka" Press, Moscow, 1971.

21. Zhuravlev, I. A., DAN USSR, Series B, No. 10, 1970.
22. Zaguskin, V. L., Spravochnik Po Chislennym Metodam Resheniya Uravneniy

[Guide to the Numerical Method of Solving Equations], "Fitmatgiz" Press,
Moscow, 1960.

23. Zukhovitskiy, S. I. and L. I. Avdeyeva, Lineynoye i VypukZoye Programmir-
ovaniye [Linear and Convex Programming], "Nauka" Press, Moscow, 1967.

24. Ivanov, V. K., Mat. sb., Vol. 61, No. 2, 1963.
25. Ivanov, V. V., DAN SSR, Vol. 143, No. 4, 1962.
26. Igumnov, S. A. and A. M. Glyuzman, Izvestiya Vuvoz, Geologiya i /107

Razvedka, No. 9, 1962.
27. Il'in, V. A. and E. G. Poznyak, Osnovy Matematicheskogo Analiza [The Bases

of Mathematical Analysis], "Nauka" Press, No. 1, Moscow, 1971.
28. Kadyrov, I. N., I. V. Bocharov and L. L. Lyakhov, Izvestiya Vuvoz, Geologiya

i Razvedka, No. 11, 1966.
29. Kagan, B. N., in the book: Primeneniye Vychislitel'noy Tekhniki Dlya

Avtomatizatsii Proizvodstva [The Use of Computer Technology to Automate
Production], "Mashgiz" Press, Moscow, 1971.

30. Kalinina, T. V. and F. M. Gol'tsman, in the book: Prikladnaya Geofizika
[Applied Geophysics], "Nedra" Press, No. 28, Moscow, 1960.

31. Kantorovich, L. V., Sib. Mat. Zhrn., Vol. 3, No. 5, 1962.
32. Karatayev, G. N., et al., Trudy IGiG SOAN SSSR [Papers of the Institute of

Geology and Geography, Siberian Branch, Academy of Sciences USSR],
No. 21, 1963.

33. Karatayev, G. N., Korrelyatsionnaya Skhema Geologicheskoy Interpretatsii
Gravitatsionnykh i Magnitnykh Anomaliy [A Correlation Diagram for the
Geological Interpretation of Gravitational and Magnetic Anomalies],
"Nauka" Press, Novosibirsk, 1966.

34. Kartvelishvili, K. M., Izv. AN SSSR, Seriya Geofiz., No. 8, 1964.
35. Konstantinov, G. N., Geol. i Geofiz. [Geology and Geophysics, No. 8, 1968.
36. Korneychuk, A. A., 0. K. Litvinenko and Yu. M. Kryzhanovskiy, Byull. NTI

VIEMS, No. 1, Page 54, 1965.
37. Kravtsov, G. G., S. V. Shalayev and V. A. Dyadyura, in the book: Voprosy

Razved Geofie [Questions of Geophysical Surveying], No. 3, "Nedra"
Press, Moscow, 1968.

38. Kudrya, A. V., V. O. Sergeev and Yu. A. Chernyshov, in the book: Mat.
Problemy Geofiziki [Mathematical Problems of Geophysics], No. 1,
Novosibirsk, 1969.

39. Klushin, I. G. and Yu. I. Nikol'skiy, in the book: Prikladnaya Geofizika
[Applied Geophysics], "Nedra" Press, No. 22, Moscow, 1959.

103



40. Koval', L. A., Izv. AN Kaz SSR, Seriya GeoZ., No. 5 (50), 1962.
41. Kolmogorova, P. P., Geol. i Geofiz., No. 4, 1962.
42. Kuz'min, Yu. I., "Several Questions of the Method of Interpreting a

Gravitational Field While Studying the Geological Structure of Kazakhstan",
Synopsis of Candidate's Thesis, 1969.

43. Lavrent'ev, M. M., O Nekotorykh Nekorrektnykh Zadachakh Matematicheskoy
Fiziki [Several Incorrect Problems of Mathematical Physics], Siberian
Branch, Academy of Sciences USSR, Novosibirsk, 1962.

44. Lavrent'ev, M. M. and V. G. Vasil'ev, Sib. Mat. Zhurn., Vol. 7, No. 3, 1966.
45. Lantsosh, K., Prakticheskiye Metody PrikLadnogo Analiza [Practical Methods

of Applied Analysis], "Fitmatgiz" Press, Moscow, 1961.
46. Litvinenko, 0. K., in the book: Prikiadnaya Geofizika [Applied Geophysics],

"Nedra" Press, No. 25, Moscow, 1960.
47. Litvinenko, 0. K., In the book: Razved. i Promysl. Geofizika [Surveying

Industrial Geophysics], "Nedra" Press, No. 37, Moscow, 1960.
48. Litvinenko, O. K. and V. A. Makarov, in the book: PrikZadnaya Geofizika

[Applied Geophysics], "Nedra" Press, No. 33, Moscow, 1962.
49. Litvinenko, 0. K., et al., Primeneniye Elektronnykh Tsifrovykh VychisLi-

tel'nykh Mashin v Gravirazvedke [The Use of Computers in Gravitational
Prospecting], ONTI - VIEMS, No. 46, Moscow, 1970.

50. Loginov, V. E., "Methods for Interpreting Magnetic Anomalies on Computers
Using the Collection Method", Synopsis of Candidate's Thesis, Kiev, 1970.

51. Lomtadze, V. V., Geol. i Geofiz., No. 8, 1966.
52. Lomtadze, V. V., in the book: Voprosy Razved. Geofiz. [Questions of

Surveying Geophysics], "Nedra" Press, No. 6, Moscow, 1967.
53. Lomtadze, V. V., in the book: Voprosy Razved. Geofiz. [Questions of Sur-

veying Geophysics], "Nedra" Press, No. 8, Moscow, 1968.
54. Luk'yanova, N. N., Geol. i Geofiz., No. 4, 1962.
55. Malovichko, A. K., Metody Analitich. ProdoZzheniya Anomaliy Sily Tyazhesti

i ikh Primeneniya k Zadacham Gravirazvedki [Method of Analytical
Continuation of Gravitational Force Anomalies and Their Use for the Problems
of Gravitational Prospecting], Gostoptekhizdat, Moscow, 1956.

56. Malovichko, A. V., Osnovnoy Kurs Gravirazvedki. Perm University Press,
No. 1, 1966; No. 2, 1968.

56a. Nepomnyashchikh, A. A., in the book: Geologiya, Gornoye Delo, Metallurgiya
[Geology, Mining, and Metalurgy], Metallurgizat, No. 13, Moscow, 1956.

57. Nikitskiy, V. E., Byull. NTI MG ON SSSR, No. 5-6, Pages 39-40, 1962.
58. Savenko, S. S., in the book: Primeneniye Mat. Metodov i Vychisi. Tekhniki v

Gornom Dele. [Use of Mathematical Methods and Computer Technology in
Mining], "Nedra" Press, Moscow, 1965.

59. Strakhov, V. M., Izv. AN SSSR, Seriya Geofiz., Pages I-III, No. 3-4, 1962. /108
60. Strakhov, V. M., Izv. AN SSSR, Seriya Geofiz., No. 1, 1961.
61. Strakhov, V. M., Izv. AN SSSR, Seriya Geofiz., No. 4, 1964.
62. Tikhonov, A. N., DAN SSSR, Vol. 39, No. 5, 1943.
63. Tikhonov, A. N., DAN SSSR, Vol. 151, No. 3, 1963.
64. Tikhonov, A. N., DAN SSSR, Vol. 153, No. 1, 1963.
65. Tikhonov, A. N. and V. B. Glasko, Vych. Mat. i Mat. Fizika, Vol. 5, No. 3,

1965.
66. Tikhonov, A. N., in the book: VychisliteL'nyye Metody i Programmirovanie

[Computer Methods and Programming], No. 8, MGU Press, 1967.

104



67. Tikhonov, A. N., V. B. Glasko and 0. K. Litvinenko, Izv. AN SSSR. Fizika
Zemli, No. 12, 1968.

68. Tyapkin, K. S. and G. Ya. Golizdra, Kratkiy Obzor Sovremennykh Metodov
Oslableniya Regional 'nogo Fona Gravitatsionnogo i Magnitnogo Poley
[A Short Summary of Modern Methods for Weakening the Local Background
of Gravitational and Magnetic Fields], ONTI Gosgeolkoma SSSR, Moscow,
1963.

69. Uspenskiy, D. G., In the book: Voprosy Razvedochnoy Geofiziki [Questions
of Surveying Geophysics], "Nedra" Press, Moscow, 1964.

70. Uspenskiy, D. G., Gravirazvedka [Gravitational Prospecting], "Nedra" Press,
Moscow, 1968.

71. Fedynskiy, V. V., Trudy IV Mezhdunarodn. Neftyanogo Kongressa [Works of the
IV International Petroleum Congress], 2, 1956.

72. Fedynskiy, V. V., Razvedochnaya Geofizika [Surveying Geophysics], "Nedra"
Press, Moscow, 1964.

73. Khammer, Z., Trudy IV Mezhdunarodn. Neftyanogo Kongressa [Works of the IV
International Petroleum Congress], 2, 1956.

74. Shalayev, S. V., DAN SSSR, Vol. 117, No. 3, 1957.
75. Shalayev, S. V., In the book: Prikladnaya Geofizika [Applied Geophysics],

"Nedra" Press, No. 31, Moscow, 1961.
76. Shalayev, S. V., in the book: Prikladnaya Geofizika [Applied Geophysics],

"Nedra" Press, No. 33, Moscow, 1962.
77. Shalayev, S. V., Zap. Leningradsk. Gorn. In-ta, Vol. 46, No. 2, 1963.
78. Shalayev, S. V., Zap. Leningradsk. Gorn. In-ta, Vol. 50, No. 2, 1966.
79. Shreyder, Yu. A., In the book: Voprosy Teorii Matematicheskikh Mashin

[Questions of Computer Theory], "Fizmatgiz Press, No. 1, Moscow, 1958.
80. Yun'kov, A. A. and Ye. G. Bulakh, "Papers of the Institute of Geological

Sciences", Seriya Geofiz [Geophysics Theories], AN USSR, Edition 2, 1958.
81. Yun'kov, A. A., In the book: Geofizicheskaya Razvedka [Geophysical

Surveying], Gostoptekhizdat, No. 3, Moscow, 1961.
82. Yun'kov, A. A., M. L. Afanas'ev and N. A. Fedorova, Interpretatsiya

Anomaliy VA, Vzz i Z Nad Kontaktami i Sbrosami [Interpretation of the

Anomalies VA, V and Z Over Contacts and Faults], Gosgeoltekhizdat,

Moscow, 1961.
83. Yun'kov, A. A., M. L. Afanas'yev and N. A. Fedorova, Interpretatsiya

Anomaliy V i N Nad Kontaktami i Sbrosami [Interpretation of thexz
Anomalies Vxz and H Over Contacts and Faults], Gosgeoltekhizdat, Moscow,
1961.

84. Yun'kov, A. A., Interpretatsiya Magnitnykh i Gravitatsionnykh Anomaliy
Nad Kupoloobraznymi Strukturamni [Interpreting Magnetic and Gravitational
Anomalies Over Dome-Shaped Structures], Gosgeoltekhizdat, Moscow, 1962.

85. Baranov, V., Rev. Inst. franc. petrole, Vol. 17, No. 4, 1962.
86. Bott, M. H. P., Geophys. prospecting, Vol. 7, No. 1, 1957.
87. Bott, M. H. P., Geophys. J. R. Astron. Soc., Vol. 3, No. 1, 1960.
88. Bott, M. H. P., Geophys. prospecting, Vol. 11, No. 3, 1963.
89. Bott, M. H. P., Geophys. J. R. Astron. Soc., Vol. 13, 1967.
90. Corbato, C. E., Geophys., Vol. 30, No. 2, 1965.
91. Cordel, L. and R. Henderson, Geophys, Vol. 33, No. 4, 1968.

105



92. Danes, Z. F., Geophys., Vol. 25, No. 6, 1960.
93. Dyrelins, D. and A. Vogel, Improvement of convergency in iterative gravity

interpretation, University of Uppsala, Report No. 5, 1971.
94. Fajklewicz, Z., PrzegZad geologiczny, Vol. 8, No. 9, 1960.
95. Hammer, S., Geophys., Vol. 28, No. 3, 1963.
96. Hall, D. H., Trans. Am. geophys. Un., Vol. 39, 1958.
97. Healy, J. H. and F. Press, Geophys., Vol. 29, No. 3, 1964.
98. Jung, K., Schwerkraftverfahren in der angewandten Geophysik [Gravitational

Procedures in Applied Geophysics], Leipzig, 1961.
99. Kane, M. F., Geophys., Vol. 27, No. 4, 1962.

100. Mottlova, L., Geofysikalni sbornik, No. 178, 1963.
101. Morgan, N. and F. Grant, Geophys. prospecting, Vol. 11, No. 1, 1963.
102. Nedyalkov, I., Godishn. Vissh. Tekhnich. Uchebni Zaved [Annual: /109

Higher Technology Educational Institutions], "Fizmatgiz" Press, Vol. 6,
2nd collection, 1969.

103. Pick, M., Geophys. sbornik, No. 126-145, 1960.
104. Pick, M., Geofys. sbornik, No. 177, 1963.
105. LaPorte, M., Geophys. prospecting, Vol. 10, No. 3, 1962.
106. Rosen, I. B., J. Soc. Ind. and Appl. Mat., Vol. 8, No. 1, 1960.
107. Roy, A., Geophys., Vol. 26, No. 5, 1961.
108. Roy, A., Geophys., Vol. 27, 1962.
109. Sharma, P. V., Pure and Appi. Geophys., Vol. 65, No. 3, 1966.
110. Sharpel, A. and P. W. Fullerton, Geophys., Vol. 17, No. 4, 1952.
111. Stojan, E., Canadian Oil and Gas industries, Vol. 15, No. 5, 1962.
112. Talwani, M., J. Worzel and M. Landisman, J. Geophys. Res., Vol. 64, 1959.
113. Talwani, M. and M. Ewing, Geophys., Vol. 25, No. 1, 1960.
114. Tanner, J. G., Geophys. J. R. astr. Soc., Vol. 13, 1967.
115. Vogel, A., Geophys. prospecting, Vol. 11, No. 1, 1963.
116. Zidarov, D., Izv. Na Geofizich. In-t, Vol. 8, Bulgarian Academy of Sciences,

1966.
117. Zidarov, D. and Z. Zhelev, Geophys. prospecting, Vol. 18, No. 1, 1970.
118. Zidarov, D., O Reshenii Nekotorykh Obratnykh Zadach Potentsial'nykh Poley

i Ego Primeneniya k Voprosam Geofiziki [The Solution of Several Inverse
Problems of Potential Fields and the Application of the Solution to the
Problems of Geophysics], Bulgarian Academy of Sciences Press, Sofia, 1968.

Translated for the National Aeronautics and Space Administration under contract
No. NASW-2485 by Techtran Corporation, P. 0. Box 729, Glen Burnie, Maryland,
21061, translator: Thomas W. Appich, Jr.

106




